
Oracle Berkeley DB

Getting Started with
Replicated Applications

for C++

12c Release 1
Library Version 12.1.6.2

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
https://forums.oracle.com/forums/forum.jspa?forumID=271

Published 3/28/2016

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
https://forums.oracle.com/forums/forum.jspa?forumID=271

3/28/2016 Using Replication with DB Page iii

Table of Contents
Preface ... v

Conventions Used in this Book .. v
For More Information ... vi

Contact Us ... vi
1. Introduction .. 1

Overview .. 1
Replication Environments .. 1
Replication Databases .. 2
Communications Layer ... 2
Selecting a Master .. 2

Replication Benefits ... 3
Replication Mechanisms ... 4

Replication Manager Overview .. 4
Write Forwarding Overview ... 5
Replication Base API Overview .. 5

Holding Elections .. 6
Influencing Elections .. 6
Winning Elections ... 6
Switching Masters ... 7

Permanent Message Handling .. 7
When Not to Manage Permanent Messages ... 8
Managing Permanent Messages .. 8
Implementing Permanent Message Handling .. 9

Event Handling .. 10
2. Transactional Application .. 12

Application Overview .. 12
Program Listing ... 12

Class: RepConfigInfo .. 13
Class: excxx_repquote_gsg_simple .. 13
Function: usage() .. 15
Function: main() ... 15
Method: SimpleTxn::init() .. 16
Method: SimpleTxn::doloop() .. 17
Method: SimpleTxn::print_stocks() ... 20

3. The DB Replication Manager .. 22
The DbSite Handle ... 23
Starting and Stopping Replication ... 23

Managing Election Policies ... 26
Selecting the Number of Threads ... 28

Adding the Replication Manager to RepMgr ... 28
Replication Manager Permanent Message Handling ... 35

Identifying Permanent Message Policies .. 35
Setting the Permanent Message Timeout .. 36
Adding a Permanent Message Policy to RepMgrGSG 37

Managing Election Times .. 38
Managing Election Timeouts ... 38

3/28/2016 Using Replication with DB Page iv

Managing Election Retry Times .. 38
Managing Connection Retries ... 39
Managing Heartbeats .. 39

4. Replica versus Master Processes .. 40
Determining State .. 40
Processing Loop ... 42
Example Processing Loop ... 44

Running It ... 50
5. Configuring for Write Forwarding ... 53

Application with Write Forwarding Overview .. 53
Program Listing ... 54

Class: RepConfigInfo .. 54
Class: excxx_repquote_gsg_RepMgrWrforGSG ... 55
Function: usage() .. 57
Function: main() ... 57
Method: RepMgrWrforGSG::init() .. 59
Method: RepMgrWrforGSG::doloop() .. 61
Method: RepMgrWrforGSG::print_stocks() .. 64

6. Additional Features ... 65
Delayed Synchronization .. 65
Managing Blocking Operations .. 65
Stop Auto-Initialization .. 66
Read-Your-Writes Consistency .. 66
Client to Client Transfer .. 67

Identifying Peers ... 67
Bulk Transfers ... 68

3/28/2016 Using Replication with DB Page v

Preface
This document describes how to write replicated applications for Berkeley DB 12c Release
1 (library version 12.1.6.2). The APIs used to implement replication in your application are
described here. This book describes the concepts surrounding replication, the scenarios
under which you might choose to use it, and the architectural requirements that a replication
application has over a transactional application.

This book is aimed at the software engineer responsible for writing a replicated DB
application.

This book assumes that you have already read and understood the concepts contained in the
Berkeley DB Getting Started with Transaction Processing guide.

Conventions Used in this Book
The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"DbEnv::open() is a DbEnv class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:
typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number
} VENDOR;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:
typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number
 char sales_rep[MAXFIELD]; // Name of sales representative
 char sales_rep_phone[MAXFIELD]; // Sales rep's phone number
} VENDOR;

Note
Finally, notes of special interest are represented using a note block such as this.

3/28/2016 Using Replication with DB Page vi

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a transactional DB application:

• Getting Started with Transaction Processing for C++

• Getting Started with Berkeley DB for C++

• Berkeley DB Programmer's Reference Guide

• Berkeley DB C++ API Reference Guide

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: https://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: https://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://docs.oracle.com/cd/E17076_02/html/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://docs.oracle.com/cd/E17076_02/html/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://forums.oracle.com/forums/forum.jspa?forumID=271
https://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

3/28/2016 Using Replication with DB Page 1

Chapter 1. Introduction
This book provides a thorough introduction and discussion on replication as used with Berkeley
DB (DB). It begins by offering a general overview to replication and the benefits it provides. It
also describes the APIs that you use to implement replication, and it describes architecturally
the things that you need to do to your application code in order to use the replication APIs.
Finally, it discusses the differences in backup and restore strategies that you might pursue
when using replication, especially where it comes to log file removal.

You should understand the concepts from the Berkeley DB Getting Started with Transaction
Processing guide before reading this book.

Overview

The DB replication APIs allow you to distribute your database write operations (performed
on a read-write master) to one or more read-only replicas. For this reason, DB's replication
implementation is said to be a single master, multiple replica replication strategy.

Note that your database write operations can occur only on the master; any attempt to write
to a replica results in an error being raised by the DB API used to perform the write.

A single replication master and all of its replicas are referred to as a replication group. While
all members of the replication group can reside on the same machine, usually each replication
participant is placed on a separate physical machine somewhere on the network.

Note that all replication applications must first be transactional applications. The data that
the master transmits to its replicas are log records that are generated as records are updated.
Upon transactional commit, the master transmits a transaction record which tells the replicas
to commit the records they previously received from the master. In order for all of this to
work, your replicated application must also be a transactional application. For this reason, it
is recommended that you write and debug your DB application as a stand-alone transactional
application before introducing the replication layer to your code.

Replication Environments

The most important requirement for a replication participant is that it must use a unique
Berkeley DB database environment independent of all other replication participants. So
while multiple replication participants can reside on the same physical machine, no two such
participants can share the same environment home directory.

For this reason, technically replication occurs between unique database environments. So
in the strictest sense, a replication group consists of a master environment and one or more
replica environments. However, the reality is that for production code, each such environment
will usually be located on its own unique machine. Consequently, this manual sometimes talks
about replication sites, meaning the unique combination of environment home directory, host
and port that a specific replication application is using.

There is no DB-specified limit to the number of environments which can participate in a
replication group. The only limitation here is one of resources — network bandwidth, for
example.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 2

(Note, however, that the Replication Manager does place a limit on the number of
environments you can use. See Replication Manager Overview (page 4) for details.)

Also, DB's replication implementation requires all participating environments to be assigned
IDs that are locally unique to the given environment. Depending on the replication APIs that
you choose to use, you may or may not need to manage this particular detail.

For detailed information on database environments, see the Berkeley DB Getting Started with
Transaction Processing guide. For more information on environment IDs, see the Berkeley DB
Programmer's Reference Guide.

Replication Databases

DB's databases are managed and used in exactly the same way as if you were writing a
non-replicated application, with a couple of caveats. First, the databases maintained in a
replicated environment must reside either in the ENV_HOME directory, or in the directory
identified by the DbEnv::add_data_dir() method. Unlike non-replication applications, you
cannot place your databases in a subdirectory below these locations. You should also not use
full path names for your databases or environments as these are likely to break when they are
replicated to other machines.

Communications Layer

In order to transmit database writes to the replication replicas, DB requires a communications
layer. DB is agnostic as to what this layer should look like. The only requirement is that it be
capable of passing two opaque data objects and an environment ID from the master to its
replicas without corruption.

Because replicas are usually placed on different machines on the network, the
communications layer is usually some kind of a network-aware implementation. Beyond that,
its implementation details are largely up to you. It could use TCP/IP sockets, for example, or
it could use raw sockets if they perform better for your particular application.

Note that you may not have to write your own communications layer. DB provides a
Replication Manager that includes a fully-functional TCP/IP-based communications layer,
which uses IPv6 whenever possible but also supports IPv4. See Replication Mechanisms (page
4) for more information.

See the Berkeley DB Programmer's Reference Guide for a description of how to write your own
custom replication communications layer.

Selecting a Master

Every replication group is allowed one and only one master environment. Usually masters
are selected by holding an election, although it is possible to turn elections off and manually
select masters (this is not recommended for most replicated applications).

When elections are being used, they are performed by the underlying Berkeley DB replication
code so you have to do very little to implement them.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 3

When holding an election, replicas "vote" on who should be the master. Among replicas
participating in the election, the one with the most up-to-date set of log records will win the
election. Note that it's possible for there to be a tie. When this occurs, priorities are used to
select the master. See Holding Elections (page 6) for details.

For more information on holding and managing elections, see Holding Elections (page 6).

Replication Benefits

Replication offers your application a number of benefits that can be a tremendous help.
Primarily replication's benefits revolve around performance, but there is also a benefit in
terms of data durability guarantees.

Briefly, the reasons why you might choose to implement replication in your DB application are:

• Improve application reliability.

By spreading your data across multiple machines, you can ensure that your application's
data continues to be available even in the event of a hardware failure on any given machine
in the replication group.

• Improve read performance.

By using replication you can spread data reads across multiple machines on your network.
Doing so allows you to vastly improve your application's read performance. This strategy
might be particularly interesting for applications that have readers on remote network
nodes; you can push your data to the network's edges thereby improving application data
read responsiveness.

Additionally, depending on the portion of your data that you read on a given replica, that
replica may need to cache part of your data, decreasing cache misses and reducing I/O on
the replica.

• Improve transactional commit performance

In order to commit a transaction and achieve a transactional durability guarantee, the
commit must be made durable. That is, the commit must be written to disk (usually, but not
always, synchronously) before the application's thread of control can continue operations.

Replication allows you to avoid this disk I/O and still maintain a degree of durability
by committing to the network. In other words, you relax your transactional durability
guarantees on the master, but by virtue of replicating the data across the network you gain
some additional durability guarantees above what is provided locally.

Usually this strategy is implemented using some form of an asynchronous transactional
commit on the master. In this way your data writes will eventually be written to disk, but
your application will not have to wait for the disk I/O to complete before continuing with its
next operation.

Note that it is possible to cause DB's replication implementation to wait to hear from one
or more replicas as to whether they have successfully saved the write before continuing.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 4

However, in this case you might be trading performance for a even higher durability
guarantee (see below).

• Improve data durability guarantee.

In a traditional transactional application, you commit your transactions such that data
modifications are saved to disk. Beyond this, the durability of your data is dependent upon
the backup strategy that you choose to implement for your site.

Replication allows you to increase this durability guarantee by ensuring that data
modifications are written to multiple machines. This means that multiple disks, disk
controllers, power supplies, and CPUs are used to ensure that your data modification makes
it to stable storage. In other words, replication allows you to minimize the problem of a
single point of failure by using more hardware to guarantee your data writes.

If you are using replication for this reason, then you probably will want to configure your
application such that it waits to hear about a successful commit from one or more replicas
before continuing with the next operation. This will obviously impact your application's
write performance to some degree — with the performance penalty being largely dependent
upon the speed and stability of the network connecting your replication group.

For more information, see Replication Manager Permanent Message Handling (page 35).

Replication Mechanisms

There are three ways that you can choose to implement replication in your transactional
application. The first, and preferred, mechanism is to use the pre-packaged Replication
Manager that comes with the DB distribution. This framework should be sufficient for most
customers.

For applications with simple data and transaction models, Replication Manager provides
automatic write forwarding as a configurable option.

If for some reason using Replication Manager or write forwarding does not meet your
application's technical requirements, you will have to use the Replication Base APIs available
through the Berkeley DB library to write your own custom replication framework.

These approaches are described in slightly greater detail in this section. The bulk of
the chapters later in this book are dedicated to these two replication implementation
mechanisms.

Replication Manager Overview

DB's pre-packaged Replication Manager exists as a layer on top of the DB library. The
Replication Manager is a multi-threaded implementation that allows you to easily add
replication to your existing transactional application. You access and manage the Replication
Manager using methods that are available off the DbEnv class.

The Replication Manager:

• Provides a multi-threaded communications layer using pthreads (on Unix-style systems and
similar derivatives such as Mac OS X), or Windows threads on Microsoft Windows systems.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 5

• Uses TCP/IP sockets. Network traffic is handled via threads that handle inbound and
outbound messages. However, each process uses a single socket that is shared using
select().

Note that for this reason, the Replication Manager is limited to a maximum of 60 replicas
(on Windows) and approximately 1000 replicas (on Unix and related systems), depending on
how your system is configured.

• Upon application startup, a master can be selected either manually or via elections.
After startup time, however, during the course of normal operations it is possible for the
replication group to need to locate a new master (due to network or other hardware related
problems, for example).

If your application has technical requirements that do not conform to the implementation
provided by the Replication Manager, you must write implement replication using the DB
Replication Base APIs. See the next section for introductory details.

Write Forwarding Overview

By default, write operations cannot be performed on a replication client site. Replication
Manager provides a configurable option that allows forwarding of simple client put and
delete operations to the master site for processing. These operations must use an implicit
NULL transaction ID to be forwarded. Any other write operation that specifies a non-NULL
transaction or uses a cursor throws a DatabaseException. This option is turned off by default.

The master must have an open database handle for the database on which a forwarded write
operation is being performed. All sites in the replication group should have the same value for
this configuration option.

For more information, see Configuring for Write Forwarding (page 53).

Replication Base API Overview

The Replication Base API is a series of Berkeley DB library classes and methods that you
can use to build your own replication infrastructure. You should use the Base API only if the
Replication Manager does not meet your application's technical requirements.

To make use of the Base API, you must write your own networking code. This frees you from
the technical constraints imposed by the Replication Manager. For example, by writing your
own framework, you can:

• Use a threading package other than pthreads (Unix) or Windows threads (Microsoft
Windows). This might be interesting to you if you are using a platform whose preferred
threading package is something other than (for example) pthreads, such as is the case for
Sun Microsystem's Solaris operating systems.

• Implement your own sockets. The Replication Manager uses TCP/IP sockets. While this
should be acceptable for the majority of applications, sometimes UDP or even raw sockets
might be desired.

For information on writing a replicated application using the Berkeley DB Replication Base
APIs, see the Berkeley DB Programmer's Reference Guide.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 6

Holding Elections

Finding a master environment is one of the fundamental activities that every replication
replica must perform. Upon startup, the underlying DB replication code will attempt to locate
a master. If a master cannot be found, then the environment should initiate an election.

Note

In some rare situations, it is desirable for the application to manually select its
master. For these cases, elections can be turned off.

Manually selecting a master is an activity that should be performed infrequently,
if ever. You turn elections off by using the DbEnv::rep_set_config() and
DbEnv::repmgr_start() methods.

How elections are held depends upon the API that you use to implement replication. For
example, if you are using the Replication Manager elections are held transparently without
any input from your application's code. In this case, DB will determine which environment is
the master and which are replicas.

Influencing Elections

If you want to control the election process, you can declare a specific environment to be the
master. Should the master become unavailable during run-time for any reason, an election
is held. The environment that receives the most number of votes, wins the election and
becomes the master. A machine receives a vote because it has the most up-to-date log
records.

Because ties are possible when elections are held, it is possible to influence which
environment will win the election. How you do this depends on which API you are using. In
particular, if you are writing a custom replication layer, then there are a great many ways to
manually influence elections.

One such mechanism is priorities. When votes are cast during an election, the winner is
determined first by the environment with the most up-to-date log records. But if this is a tie,
the the environment's priority is considered. So given two environments with log records that
are equally recent, votes are cast for the environment with the higher priority.

Therefore, if you have a machine that you prefer to become a master in the event of an
election, assign it a high priority. Assuming that the election is held at a time when the
preferred machine has up-to-date log records, that machine will win the election.

Winning Elections

To win an election:

1. There cannot currently be a master environment.

2. The environment must have the most recent log records. Part of holding the election is
determining which environments have the most recent log records. This process happens
automatically; your code does not need to involve itself in this process.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 7

3. The environment must receive the most number of votes from the replication
environments that are participating in the election.

If you are using the Replication Manager, then in the event of a tie vote the environment
with the highest priority wins the election. If two or more environments receive the same
number of votes and have the same priority, then the underlying replication code picks one
of the environments to be the winner. Which winner will be picked by the replication code is
unpredictable from the perspective of your application code.

Switching Masters

To switch masters:

1. Start up the environment that you want to be master as normal. At this time it is a
replica. Make sure this environment has a higher priority than all the other environments.

2. Allow the new environment to run for a time as a replica. This allows it to obtain the
most recent copies of the log files.

3. Shut down the current master. This should force an election. Because the new
environment has the highest priority, it will win the election, provided it has had enough
time to obtain all the log records.

4. Optionally restart the old master environment. Because there is currently a master
environment, an election will not be held and the old master will now run as a replica
environment.

Permanent Message Handling

Messages received by a replica may be marked with special flag that indicates the message
is permanent. Custom replicated applications will receive notification of this flag via the
DB_REP_ISPERM return value from the DbEnv::rep_process_message() method. There is
no hard requirement that a replication application look for, or respond to, this return code.
However, because robust replicated applications typically do manage permanent messages, we
introduce the concept here.

A message is marked as being permanent if the message affects transactional integrity.
For example, transaction commit messages are an example of a message that is marked
permanent. What the application does about the permanent message is driven by the
durability guarantees required by the application.

For example, consider what the Replication Manager does when it has permanent message
handling turned on and a transactional commit record is sent to the replicas. First, the
replicas must transactional-commit the data modifications identified by the message.
And then, upon a successful commit, the Replication Manager sends the master a message
acknowledgment.

For the master (again, using the Replication Manager), things are a little more complicated
than simple message acknowledgment. Usually in a replicated application, the master
commits transactions asynchronously; that is, the commit operation does not block
waiting for log data to be flushed to disk before returning. So when a master is managing

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 8

permanent messages, it typically blocks the committing thread immediately before commit()
returns. The thread then waits for acknowledgments from its replicas. If it receives enough
acknowledgments, it continues to operate as normal.

If the master does not receive message acknowledgments — or, more likely, it does not receive
enough acknowledgments — the committing thread flushes its log data to disk and then
continues operations as normal. The master application can do this because replicas that
fail to handle a message, for whatever reason, will eventually catch up to the master. So by
flushing the transaction logs to disk, the master is ensuring that the data modifications have
made it to stable storage in one location (its own hard drive).

When Not to Manage Permanent Messages

There are two reasons why you might choose to not implement permanent messages. In part,
these go to why you are using replication in the first place.

One class of applications uses replication so that the application can improve transaction
through-put. Essentially, the application chooses a reduced transactional durability guarantee
so as to avoid the overhead forced by the disk I/O required to flush transaction logs to disk.
However, the application can then regain that durability guarantee to a certain degree by
replicating the commit to some number of replicas.

Using replication to improve an application's transactional commit guarantee is called
replicating to the network.

In extreme cases where performance is of critical importance to the application, the
master might choose to both use asynchronous commits and decide not to wait for message
acknowledgments. In this case the master is simply broadcasting its commit activities to its
replicas without waiting for any sort of a reply. An application like this might also choose to
use something other than TCP/IP for its network communications since that protocol involves
a fair amount of packet acknowledgment all on its own. Of course, this sort of an application
should also be very sure about the reliability of both its network and the machines that are
hosting its replicas.

At the other extreme, there is a class of applications that use replication purely to improve
read performance. This sort of application might choose to use synchronous commits on the
master because write performance there is not of critical performance. In any case, this kind
of an application might not care to know whether its replicas have received and successfully
handled permanent messages because the primary storage location is assumed to be on the
master, not the replicas.

Managing Permanent Messages

With the exception of a rare breed of replicated applications, most masters need some view
as to whether commits are occurring on replicas as expected. At a minimum, this is because
masters will not flush their log buffers unless they have reason to expect that permanent
messages have not been committed on the replicas.

That said, remember that managing permanent messages involves a fair amount of network
traffic. The messages must be sent to the replicas and the replicas must acknowledge them.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 9

This represents a performance overhead that can be worsened by congested networks or
outright outages.

Therefore, when managing permanent messages, you must first decide on how many of
your replicas must send acknowledgments before your master decides that all is well and
it can continue normal operations. When making this decision, you could decide that all
replicas must send acknowledgments. But unless you have only one or two replicas, or you are
replicating over a very fast and reliable network, this policy could prove very harmful to your
application's performance.

Therefore, a common strategy is to wait for an acknowledgment from a simple majority of
replicas. This ensures that commit activity has occurred on enough machines that you can be
reliably certain that data writes are preserved across your network.

Remember that replicas that do not acknowledge a permanent message are not necessarily
unable to perform the commit; it might be that network problems have simply resulted in a
delay at the replica. In any case, the underlying DB replication code is written such that a
replica that falls behind the master will eventually take action to catch up.

Depending on your application, it may be possible for you to code your permanent message
handling such that acknowledgment must come from only one or two replicas. This is a
particularly attractive strategy if you are closely managing which machines are eligible to
become masters. Assuming that you have one or two machines designated to be a master in
the event that the current master goes down, you may only want to receive acknowledgments
from those specific machines.

Finally, beyond simple message acknowledgment, you also need to implement an
acknowledgment timeout for your application. This timeout value is simply meant to ensure
that your master does not hang indefinitely waiting for responses that will never come
because a machine or router is down.

Implementing Permanent Message Handling

How you implement permanent message handling depends on which API you are using to
implement replication. If you are using the Replication Manager, then permanent message
handling is configured using policies that you specify to the framework. For a list of these
policies, see Replication Manager Permanent Message Handling (page 35).

If these policies are not sufficient for your needs, or if you want your application to take more
corrective action than simply flushing log buffers in the event of an unsuccessful commit, then
you must implement replication using the Base APIs.

When using the Base APIs, messages are sent from the master to its replica using a send()
callback that you implement. Note, however, that DB's replication code automatically sets the
permanent flag for you where appropriate.

If the send() callback returns with a non-zero status, DB flushes the transaction log
buffers for you. Therefore, you must cause your send() callback to block waiting for
acknowledgments from your replicas. As a part of implementing the send() callback, you
implement your permanent message handling policies. This means that you identify how

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 10

many replicas must acknowledge the message before the callback can return 0. You must also
implement the acknowledgment timeout, if any.

Further, message acknowledgments are sent from the replicas to the master using a
communications channel that you implement (the replication code does not provide a channel
for acknowledgments). So implementing permanent messages means that when you write your
replication communications channel, you must also write it in such a way as to also handle
permanent message acknowledgments.

For more information on implementing permanent message handling using a custom
replication layer, see the Berkeley DB Programmer's Reference Guide.

Event Handling

The replication system is capable of reporting a great many events to which your code might
need to respond. To track and respond to these events, you implement a callback whose
function it is to respond to events that happen within the DB library.

Note that this callback is usable for events beyond those required for replication purposes. In
this section, however, we only discuss some of the replication-specific events.

The callback is required to determine which event has been passed to it, and then take action
depending on the event.

Some of the more commonly handled replication events are described below. For a complete
list of events, see the DbEnv::set_event_notify() method in the Berkeley DB C++ API
Reference Guide.

• DB_EVENT_REP_CLIENT

The local environment is now a replica.

• DB_EVENT_REP_LOCAL_SITE_REMOVED

The local Replication Manager site has been removed from the group.

• DB_EVENT_REP_MASTER

The local environment is now a master.

• DB_EVENT_REP_NEWMASTER

An election was held and a new environment was made a master. However, the current
environment is not the master. This event exists so that you can cause your code to take
some unique action in the event that the replication groups switches masters.

• DB_EVENT_REP_PERM_FAILED

The Replication Manager did not receive enough acknowledgements to ensure the
transaction's durability within the replicationg group. The Replication Manager has therefore
flushed the transaction to the master's local disk for storage.

Library Version 12.1.6.2 Introduction

3/28/2016 Using Replication with DB Page 11

How the Replication Manager knows whether the acknowledgements it has received
is determined by the acknowledgement policy you have set for your applicaton. See
Identifying Permanent Message Policies (page 35) for more information.

• DB_EVENT_REP_SITE_ADDED

A new Replication Manager site has joined the replication group.

• DB_EVENT_REP_SITE_REMOVED

An existing Replication Manager site has been removed from the replication group.

• DB_EVENT_REP_STARTUPDONE

The replica has completed startup synchronization and is now processing log records
received from the master.

For an example of how to use this callback, see Determining State (page 40)

3/28/2016 Using Replication with DB Page 12

Chapter 2. Transactional Application
In this chapter, we build a simple transaction-protected DB application. Throughout the
remainder of this book, we will add replication to this example. We do this to underscore
the concepts that we are presenting in this book; the first being that you should start with a
working transactional program and then add replication to it.

Note that this book assumes you already know how to write a transaction-protected DB
application, so we will not be covering those concepts in this book. To learn how to write
a transaction-protected application, see the Berkeley DB Getting Started with Transaction
Processing guide.

Application Overview

Our application maintains a stock market quotes database. This database contains records
whose key is the stock market symbol and whose data is the stock's price.

The application operates by presenting you with a command line prompt. You then enter the
stock symbol and its value, separated by a space. The application takes this information and
writes it to the database.

To see the contents of the database, simply press return at the command prompt.

To quit the application, type 'quit' or 'exit' at the command prompt.

For example, the following illustrates the application's usage. In it, we use entirely fictitious
stock market symbols and price values.
> ./excxx_repquote_gsg_simple -h env_home_dir
QUOTESERVER> stock1 88
QUOTESERVER> stock2 .08
QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88

QUOTESERVER> stock1 88.9
QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88.9
 stock2 .08

QUOTESERVER> quit
>

Program Listing

Our example program is a fairly simple transactional application. At this early stage of its
development, the application contains no hint that it must be network-aware so the only
command line argument that it takes is one that allows us to specify the environment home

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 13

directory. (Eventually, we will specify things like host names and ports from the command
line).

Note that the application performs all writes under the protection of a transaction; however,
multiple database operations are not performed per transaction. Consequently, we simplify
things a bit by using autocommit for our database writes.

Also, this application is single-threaded. It is possible to write a multi-threaded or multi-
process application that performs replication. That said, the concepts described in this book
are applicable to both single threaded and multi-threaded applications so nothing is gained by
multi-threading this application other than distracting complexity. This manual does, however,
identify where care must be taken when performing replication with a non-single threaded
application.

Finally, remember that transaction processing is not described in this manual. Rather, see the
Berkeley DB Getting Started with Transaction Processing guide for details on that topic.

Class: RepConfigInfo

Before we begin, we present a class that we will use to maintain useful information for us.
Under normal circumstances, this class would not be necessary for a simple transactional
example such as this. However, this code will grow into a replicated example that needs to
track a lot more information for the application, and so we lay the groundwork for it here.

The class that we create is called RepConfigInfo and its only purpose at this time is to track
the location of our environment home directory.
#include <db_cxx.h>

class RepConfigInfo {
public:
 RepConfigInfo();
 virtual ~RepConfigInfo();

public:
 char* home;
};

RepConfigInfo::RepConfigInfo()
{
 home = "TESTDIR";
}

RepConfigInfo::~RepConfigInfo()
{
}

Class: excxx_repquote_gsg_simple

Our transactional example will instantiate a class, SimpleTxn, that performs all our work for
us. Before we implement our main() function, we show the SimpleTxn class declaration.

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 14

First, we provide some declarations and definitions that are needed later in our example:
#include <iostream>
#include <db_cxx.h>
#include "RepConfig.h"

using std::cout;
using std::cin;
using std::cerr;
using std::endl;
using std::flush;

#define CACHESIZE (10 * 1024 * 1024)
#define DATABASE "quote.db"

const char *progname = "excxx_reqquote_gsg_simple";

#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <direct.h>

extern "C" {
 extern int getopt(int, char * const *, const char *);
 extern char *optarg;
}
#else
#include <errno.h>
#endif

And then we define our SimpleTxn class:
class SimpleTxn
{
public:
 // Constructor.
 SimpleTxn();
 // Initialization method. Creates and opens our environment handle.
 int init(RepConfigInfo* config);
 // The doloop is where all the work is performed.
 int doloop();
 // terminate() provides our shutdown code.
 int terminate();

private:
 // disable copy constructor.
 SimpleTxn(const SimpleTxn &);
 void operator = (const SimpleTxn &);

 // internal data members.

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 15

 RepConfigInfo *app_config;
 DbEnv dbenv;

 // private methods.
 // print_stocks() is used to display the contents of our database.
 static int print_stocks(Db *dbp);
};

Note that we show the implementation of the various SimpleTxn methods later in this
section.

Function: usage()

Our usage() is at this stage of development trivial because we only have one command line
argument to manage. Still, we show it here for the sake of completeness.

static void usage()
{
 cerr << "usage: " << progname << endl
 << "-h home" << endl;

 exit(EXIT_FAILURE);
}

Function: main()

Now we provide our main() function. This is a trivial function whose only job is to collect
command line information, then instantiate a SimpleTxn object, run it, then terminate it.

We begin by declaring some useful variables. Of these, note that we instantiate our
RepConfigInfo object here. Recall that this is used to store information useful to our code.
This class becomes more interesting later in this book.

int main(int argc, char **argv)
{
 RepConfigInfo config;
 char ch;
 int ret;

Then we collect our command line information. Again, this is at this point fairly trivial:

 // Extract the command line parameters
 while ((ch = getopt(argc, argv, "h:")) != EOF) {
 switch (ch) {
 case 'h':
 config.home = optarg;
 break;
 case '?':
 default:
 usage();
 }
 }

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 16

 // Error check command line.
 if (config.home == NULL)
 usage();

Now we instantiate and initialize our SimpleTxn class, which is what is responsible for doing
all our real work. The SimpleTxn::init() method creates and opens our environment
handle.

 SimpleTxn runner;
 try {
 if((ret = runner.init(&config)) != 0)
 goto err;

Then we call the SimpleTxn::doloop() method, which is where the actual transactional
work is performed for this application.

 if((ret = runner.doloop()) != 0)
 goto err;

Finally, catch exceptions and terminate the program:

 } catch (DbException dbe) {
 cerr << "Caught an exception during initialization or"
 << " processing: " << dbe.what() << endl;
 }
err:
 runner.terminate();
 return 0;
}

Method: SimpleTxn::init()

The SimpleTxn::init() method is used to create and open our environment handle. For
readers familiar with writing transactional DB applications, there should be no surprises here.
However, we will be adding to this in later chapters as we roll replication into this example.

First, we show the class constructor implementation, which is only used to initialize a few
variables:

SimpleTxn::SimpleTxn() : app_config(0), dbenv(0)
{
}

We now provide the init() method implementation. The only thing of interest here is that
we specify DB_TXN_NOSYNC to our environment. This causes our transactional commits to
become non-durable, which is something that we are doing only because of the nature of our
example.

int SimpleTxn::init(RepConfigInfo *config)
{
 int ret = 0;

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 17

 app_config = config;

 dbenv.set_errfile(stderr);
 dbenv.set_errpfx(progname);

 /*
 * We can now open our environment.
 */
 dbenv.set_cachesize(0, CACHESIZE, 0);
 dbenv.set_flags(DB_TXN_NOSYNC, 1);

 try {
 dbenv.open(app_config->home,
 DB_CREATE |
 DB_RECOVER |
 DB_INIT_LOCK |
 DB_INIT_LOG |
 DB_INIT_MPOOL |
 DB_INIT_TXN,
 0);
 } catch(DbException dbe) {
 cerr << "Caught an exception during DB environment open." << endl
 << "Ensure that the home directory is created prior to"
 << " starting the application." << endl;
 ret = ENOENT;
 goto err;
 }

err:
 return ret;
}

Finally, we present the SimpleTxn::terminate() method here. All this does is close
the environment handle. Again, there should be no surprises here, but we provide the
implementation for the sake of completeness anyway.

int SimpleTxn::terminate()
{
 try {
 dbenv.close(0);
 } catch (DbException dbe) {
 cerr << "error closing environment: " << dbe.what() << endl;
 }
 return 0;
}

Method: SimpleTxn::doloop()

Having written our main() function and support utility methods, we now implement our
application's primary data processing method. This method provides a command prompt at

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 18

which the user can enter a stock ticker value and a price for that value. This information is
then entered to the database.

To display the database, simply enter return at the prompt.

To begin, we declare a database pointer, several Dbt variables, and the usual assortment of
variables used for buffers and return codes. We also initialize all of this.

#define BUFSIZE 1024
int SimpleTxn::doloop()
{
 Db *dbp;
 Dbt key, data;
 char buf[BUFSIZE], *rbuf;
 int ret;

 dbp = NULL;
 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));
 ret = 0;

Next, we begin the loop and we immediately open our database if it has not already been
opened. Notice that we specify autocommit when we open the database. In this case,
autocommit is important because we will only ever write to our database using it. There is no
need for explicit transaction handles and commit/abort code in this application, because we
are not combining multiple database operations together under a single transaction.

Autocommit is described in greater detail in the Berkeley DB Getting Started with Transaction
Processing guide.

 for (;;) {
 if (dbp == NULL) {
 dbp = new Db(&dbenv, 0);

 try {
 dbp->open(NULL, DATABASE, NULL, DB_BTREE,
 DB_CREATE | DB_AUTO_COMMIT, 0);
 } catch(DbException dbe) {
 dbenv.err(ret, "DB->open");
 throw dbe;
 }
 }

Now we implement our command prompt. This is a simple and not very robust implementation
of a command prompt. If the user enters the keywords exit or quit, the loop is exited and
the application ends. If the user enters nothing and instead simply presses return, the entire
contents of the database is displayed. We use our print_stocks() method to display the
database. (That implementation is shown next in this chapter.)

Notice that very little error checking is performed on the data entered at this prompt. If the
user fails to enter at least one space in the value string, a simple help message is printed and

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 19

the prompt is returned to the user. That is the only error checking performed here. In a real-
world application, at a minimum the application would probably check to ensure that the
price was in fact an integer or float value. However, in order to keep this example code as
simple as possible, we refrain from implementing a thorough user interface.

 cout << "QUOTESERVER" ;
 cout << "> " << flush;

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 break;
 if (strtok(&buf[0], " \t\n") == NULL) {
 switch ((ret = print_stocks(dbp))) {
 case 0:
 continue;
 default:
 dbp->err(ret, "Error traversing data");
 goto err;
 }
 }
 rbuf = strtok(NULL, " \t\n");
 if (rbuf == NULL || rbuf[0] == '\0') {
 if (strncmp(buf, "exit", 4) == 0 ||
 strncmp(buf, "quit", 4) == 0)
 break;
 dbenv.errx("Format: TICKER VALUE");
 continue;
 }

Now we assign data to the Dbts that we will use to write the new information to the database.

 key.set_data(buf);
 key.set_size((u_int32_t)strlen(buf));

 data.set_data(rbuf);
 data.set_size((u_int32_t)strlen(rbuf));

Having done that, we can write the new information to the database. Remember that this
application uses autocommit, so no explicit transaction management is required. Also,
the database is not configured for duplicate records, so the data portion of a record is
overwritten if the provided key already exists in the database. However, in this case DB
returns DB_KEYEXIST — which we ignore.

 if ((ret = dbp->put(NULL, &key, &data, 0)) != 0)
 {
 dbp->err(ret, "DB->put");
 if (ret != DB_KEYEXIST)
 goto err;
 }
 }

Finally, we close our database before returning from the method.

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 20

err: if (dbp != NULL) {
 (void)dbp->close(DB_NOSYNC);
 cout << "database closed" << endl;
 }

 return (ret);
}

Method: SimpleTxn::print_stocks()

The print_stocks() method simply takes a database handle, opens a cursor, and uses it to
display all the information it finds in a database. This is trivial cursor operation that should
hold no surprises for you. We simply provide it here for the sake of completeness.

If you are unfamiliar with basic cursor operations, please see the Getting Started with
Berkeley DB guide.

int SimpleTxn::print_stocks(Db *dbp)
{
 Dbc *dbc;
 Dbt key, data;
#define MAXKEYSIZE 10
#define MAXDATASIZE 20
 char keybuf[MAXKEYSIZE + 1], databuf[MAXDATASIZE + 1];
 int ret, t_ret;
 u_int32_t keysize, datasize;

 if ((ret = dbp->cursor(NULL, &dbc, 0)) != 0) {
 dbp->err(ret, "can't open cursor");
 return (ret);
 }

 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));

 cout << "\tSymbol\tPrice" << endl
 << "\t======\t=====" << endl;

 for (ret = dbc->get(&key, &data, DB_FIRST);
 ret == 0;
 ret = dbc->get(&key, &data, DB_NEXT)) {
 keysize = key.get_size() > MAXKEYSIZE ? MAXKEYSIZE :
 key.get_size();
 memcpy(keybuf, key.get_data(), keysize);
 keybuf[keysize] = '\0';

 datasize = data.get_size() >=
 MAXDATASIZE ? MAXDATASIZE : data.get_size();
 memcpy(databuf, data.get_data(), datasize);
 databuf[datasize] = '\0';

Library Version 12.1.6.2 Transactional Application

3/28/2016 Using Replication with DB Page 21

 cout << "\t" << keybuf << "\t" << databuf << endl;
 }
 cout << endl << flush;

 if ((t_ret = dbc->close()) != 0 && ret == 0) {
 cout << "closed cursor" << endl;
 ret = t_ret;
 }

 switch (ret) {
 case 0:
 case DB_NOTFOUND:
 return (0);
 default:
 return (ret);
 }
}

3/28/2016 Using Replication with DB Page 22

Chapter 3. The DB Replication Manager
The easiest way to add replication to your transactional application is to use the Replication
Manager. The Replication Manager provides a comprehensive communications layer that
enables replication. For a brief listing of the Replication Manager's feature set, see Replication
Manager Overview (page 4).

To use the Replication Manager, you make use of a combination of the DbSite class and
related methods, plus special methods off the DbEnv class. That is:

1. Create an environment handle as normal.

2. Configure your environment handle as needed (e.g. set the error file and error prefix
values, if desired).

3. Use the Replication Manager replication classes and methods to configure the Replication
Manager. Using these classes and methods causes DB to know that you are using the
Replication Manager.

Configuring the Replication Manager entails setting the replication environment's priority,
setting the TCP/IP address that this replication environment will use for incoming
replication messages, identifying TCP/IP addresses of other replication environments, and
so forth. These actions are discussed throughout the remainder of this chapter.

4. Open your environment handle. When you do this, be sure to specify DB_INIT_REP and
DB_THREAD to your open flags. (This is in addition to the flags that you normally use for
a single-threaded transactional application). The first of these causes replication to be
initialized for the application. The second causes your environment handle to be free-
threaded (thread safe). Both flags are required for Replication Manager usage.

5. Start replication by calling DbEnv::repmgr_start().

6. Open your databases as needed. Masters must open their databases for read and write
activity. Replicas can open their databases for read-only activity, but doing so means they
must re-open the databases if the replica ever becomes a master. Either way, replicas
should never attempt to write to the database(s) directly.

When you are ready to shut down your application:

1. Close any open DbSite handles that you might have open.

2. Close your databases

3. Close your environment. This causes replication to stop as well.

Note
Before you can use the Replication Manager, you may have to enable it in your DB
library. This is not a requirement for Microsoft Windows systems, or Unix systems that
use pthread mutexes by default. Other systems, notably BSD and BSD-derived systems
(such as Mac OS X), must enable the Replication Manager when you configure the DB
build.

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 23

You do this by not disabling replication and by configuring the library with POSIX
threads support. In other words, replication must be turned on in the build (it is by
default), and POSIX thread support must be enabled if it is not already by default. To
do this, use the --enable-pthread_api switch on the configure script.

For example:
../dist/configure --enable-pthread-api

The DbSite Handle
Before continuing, it is useful to mention the DbSite handle. This class is used to configure
important attributes about a site such as its host name and port number, and whether it is
the local site. It is also used to indicate whether a site is a group creator, which is important
when you are starting the very first site in a replication group for the very first time.

The DbSite handle is used whenever you start up a site. It must be closed before you close
your DbEnv handle.

The DbSite handle is plays an important role in replication group management. This topic is
fully described in the Berkeley DB Programmer's Reference Guide.

Starting and Stopping Replication
As described above, you introduce replication to an application by starting with a
transactional application, performing some basic replication configuration, and then starting
replication using DbEnv::repmgr_start().

You stop replication by closing your environment cleanly in the same way you would for any DB
application.

For example, the following code fragment initializes, then stops and starts replication. Note
that other replication activities are omitted for brevity.
#include <db_cxx.h>

/* Use a 10mb cache */
#define CACHESIZE (10 * 1024 * 1024)

...

 DbEnv *dbenv; /* Environment handle. */
 DbSite *dbsite; /* Replication manager site handle */
 const char *progname; /* Program name. */
 const char *envHome; /* Environment home directory. */
 const char *listen_host; /* A TCP/IP hostname. */
 const char *other_host; /* A TCP/IP hostname. */
 int is_group_creator; /* A flag */
 u_int16 listen_port; /* A TCP/IP port. */
 u_int16 other_port; /* A TCP/IP port. */

 /* Initialize variables */
 dbenv = NULL;

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 24

 progname = "example_replication";
 envHome = "ENVIRONMENT_HOME";
 listen_host = "mymachine.sleepycat.com";
 listen_port = 5001;
 other_host = "anothermachine.sleepycat.com";
 other_port = 4555;
 is_group_creator = 1; /* This is usually set via a command line
 argument or some other external
 configuration mechanism. */

 try {
 /* Create the environment handle */
 dbenv = new DbEnv(0);

 /*
 * Configure the environment handle. Here we configure
 * asynchronous transactional commits for performance reasons.
 */
 dbenv->set_errfile(stderr);
 dbenv->set_errpfx(progname);
 (void)dbenv->set_cachesize(0, CACHESIZE, 0);
 (void)dbenv->set_flags(DB_TXN_NOSYNC, 1);

 /*
 * Configure the local address. This is the local hostname
 * and port that this replication environment will use to
 * receive incoming replication messages. Note that this can
 * be performed only once for the replication environment.
 * It is required.

 * First: Create a DB_SITE handle to identify the site's
 * host/port network address.
 */
 dbenv->repmgr_site(listen_host, listen_port, &dbsite, 0);

 /*
 * Second: Configure this site as the local site within the
 * replication group.
 */
 dbsite->set_config(DB_LOCAL_SITE, 1);

 /*
 * Third: Set DB_GROUP_CREATOR if applicable. This can be done
 * only for the local site. It should also only be peformed
 * for one and only one site in a replication group, so
 * typically this is driven by an externally-supplied
 * configuration option.
 *
 * DB_GROUP_CREATOR only has meaning if you are starting the

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 25

 * very first site for the very first time in a replication
 * group. It is otherwise ignored.
 */
 if (is_group_creator)
 dbsite->set_config(DB_GROUP_CREATOR, 1);

 /*
 * Having configured the local site, we can immediately
 * deallocate the DB_SITE handle.
 */
 dbsite->close(dbsite);

 /*
 * Set this replication environment's priority. This is used
 * for elections.
 *
 * Set this number to a positive integer, or 0 if you do not want
 * this site to be able to become a master.
 */
 dbenv->rep_set_priority(100);

 /*
 * Configure a bootstrap helper. This information is used only
 * if the site currently exists, and the local site has never
 * been started before. Otherwise, this configuration
 * information is ignored.
 *
 */
 if (!is_group_creator) {
 dbenv->repmgr_site(other_host, other_port, &dbsite, 0);
 dbsite->set_config(dbsite, DB_BOOTSTRAP_HELPER, 1);

 /*
 * Having configured the bootstrap helper site, we can
 * immediately deallocate the DB_SITE handle.
 */
 dbsite->close();
 }

 /* Open the environment handle. Note that we add DB_THREAD and
 * DB_INIT_REP to the list of flags. These are required.
 */
 dbenv->open(home, DB_CREATE | DB_RECOVER |
 DB_INIT_LOCK | DB_INIT_LOG |
 DB_INIT_MPOOL | DB_INIT_TXN |
 DB_THREAD | DB_INIT_REP,
 0);

 /*

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 26

 * Start the replication manager such that it uses 3
 * threads.
 */
 dbenv->repmgr_start(3, DB_REP_ELECTION);

 /* Sleep to give ourselves time to find a master */
 sleep(5);

 /*
 **
 *** All other application code goes here, including *****
 *** database opens *****
 **
 */

 } catch (DbException &de) {
 /* Error handling goes here */
 }

 /* Close out the application here.
 try {
 /*
 * Make sure all your database handles are closed
 * (omitted from this example).
 */

 /* Close the environment */
 if (dbenv != NULL)
 (void)dbenv->close(dbenv, 0);

 } catch (DbException &de) {
 /* Error handling goes here */
 }

 /* All done */

Managing Election Policies

Before continuing, it is worth taking a look at the startup election flags accepted by
DbEnv::repgmr_start(). These flags control how your replication application will behave
when it first starts up.

In the previous example, we specified DB_REP_ELECTION when we started replication.
This causes the application to try to find a master upon startup. If it cannot, it calls for an
election. In the event an election is held, the environment receiving the most number of votes
will become the master.

There's some important points to make here:

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 27

• This flag only requires that other environments in the replication group participate in the
vote. There is no requirement that all such environments participate. In other words, if
an environment starts up, it can call for an election, and select a master, even if all other
environment have not yet joined the replication group.

• It only requires a simple majority of participating environments to elect a master. This is
always true of elections held using the Replication Manager.

• As always, the environment participating in the election with the most up-to-date log files
is selected as master. If an environment with more recent log files has not yet joined the
replication group, it may not become the master.

Any one of these points may be enough to cause a less-than-optimum environment to be
selected as master. Therefore, to give you a better degree of control over which environment
becomes a master at application startup, the Replication Manager offers the following start-up
flags:

Flag Description

DB_REP_MASTER The application starts up and declares the
environment to be a master without calling
for an election. It is an error for more than
one environment to start up using this flag,
or for an environment to use this flag when a
master already exists.

Note that no replication group should ever
operate with more than one master.

In the event that a environment attempts
to become a master when a master already
exists, the replication code will resolve
the problem by holding an election. Note,
however, that there is always a possibility of
data loss in the face of duplicate masters,
because once a master is selected, the
environment that loses the election will have
to roll back any transactions committed until
it is in sync with the "real" master.

DB_REP_CLIENT The application starts up and declares the
environment to be a replica without calling
for an election. Note that the environment
can still become a master if a subsequent
application starts up, calls for an election,
and this environment is elected master.

DB_REP_ELECTION As described above, the application starts
up, looks for a master, and if one is not found
calls for an election.

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 28

Selecting the Number of Threads

Under the hood, the Replication Manager is threaded and you can control the number
of threads used to process messages received from other replicas. The threads that the
Replication Manager uses are:

• Incoming message thread. This thread receives messages from the site's socket and passes
those messages to message processing threads (see below) for handling.

• Outgoing message thread. Outgoing messages are sent from whatever thread performed a
write to the database(s). That is, the thread that called, for example, Db::put() is the
thread that writes replication messages about that fact to the socket.

Note that if this write activity would cause the thread to be blocked due to some condition
on the socket, the Replication Manager will hand the outgoing message to the incoming
message thread, and it will then write the message to the socket. This prevents your
database write threads from blocking due to abnormal network I/O conditions.

• Message processing threads are responsible for parsing and then responding to incoming
replication messages. Typically, a response will include write activity to your database(s), so
these threads can be busy performing disk I/O.

Of these threads, the only ones that you have any configuration control over are the message
processing threads. In this case, you can determine how many of these threads you want to
run.

It is always a bit of an art to decide on a thread count, but the short answer is you probably
do not need more than three threads here, and it is likely that one will suffice. That said,
the best thing to do is set your thread count to a fairly low number and then increase it if it
appears that your application will benefit from the additional threads.

Adding the Replication Manager to RepMgr

We now use the methods described above to add partial support to the RepMgr example that
we presented in Transactional Application (page 12). That is, in this section we will:

• Enhance our command line options to accept information of interest to a replicated
application.

• Configure our environment handle to use replication and the Replication Manager.

• Minimally configure the Replication Manager.

• Start replication.

Note that when we are done with this section, we will be only partially ready to run the
application. Some critical pieces will be missing; specifically, we will not yet be handling the
differences between a master and a replica. (We do that in the next chapter).

Also, note that in the following code fragments, additions and changes to the code are marked
in bold.

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 29

To begin, we copy the SimpleTxn code to a new file called RepMgrGSG.cpp. Having done that,
we must make some significant changes to our RepConfigInfo class because now we will be
using it to maintain a lot more information.

First, we create a new structure, RepHostInfoObj, which we use to store host and port
information for all "other" servers identified to the application via the -o command line
option. This structure is chain-able, which makes cleaning up at program shutdown time
easier.

#include <db_cxx.h>
#include <iostream>

// Chain-able struct used to store host information.
typedef struct RepHostInfoObj{
 char* host;
 u_int16_t port;
 RepHostInfoObj* next; // used for chaining multiple "other" hosts.
 bool creator; // whether this site is the group creator.
} REP_HOST_INFO;

Next, we update our RepConfigInfo class definition to manage a lot more information and a
new method.

class RepConfigInfo {
public:
 RepConfigInfo();
 virtual ~RepConfigInfo();

 void addOtherHost(char* host, int port);
public:
 u_int32_t start_policy;
 char* home;
 bool got_listen_address;
 REP_HOST_INFO this_host;
 int nrsites; // number of remote sites
 int priority;
 // used to store a set of optional other hosts.
 REP_HOST_INFO *other_hosts;
};

Then, we update our constructor to initialize our new variables.

RepConfigInfo::RepConfigInfo()
{
 start_policy = DB_REP_ELECTION;
 home = "TESTDIR";
 got_listen_address = false;
 nrsites = 0;
 priority = 100;
 other_hosts = NULL;
}

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 30

Next, we implement our new method, RepConfigInfo::addOtherHost, which is used to
create RepHostInfoObj instances and add them to the chain of "other" hosts.

RepConfigInfo::addOtherHost(char* host, int port)
{
 REP_HOST_INFO *newinfo;
 newinfo = (REP_HOST_INFO*)malloc(sizeof(REP_HOST_INFO));
 newinfo->host = host;
 newinfo->port = port;
 if (other_hosts == NULL) {
 other_hosts = newinfo;
 newinfo->next = NULL;
 } else {
 newinfo->next = other_hosts;
 other_hosts = newinfo;
 }
 nrsites++;
}

Having done that, we update our class destructor to release the RepHostInfoObj chain of
objects at class destruction time.

RepConfigInfo::~RepConfigInfo()
{
 // release any other_hosts structs.
 if (other_hosts != NULL) {
 REP_HOST_INFO *CurItem = other_hosts;
 while (CurItem->next != NULL)
 {
 REP_HOST_INFO *TmpItem = CurItem->next;
 free(CurItem);
 CurItem = TmpItem;
 }
 free(CurItem);
 }
 other_hosts = NULL;
}

Having completed our update to the RepConfigInfo class, we can now start making changes
to the main portion of our program. We begin by changing the program's name.

using std::cout;
using std::cin;
using std::cerr;
using std::endl;
using std::flush;

#define CACHESIZE (10 * 1024 * 1024)
#define DATABASE "quote.db"

const char *progname = "RepMgrGSG";

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 31

Next we update our usage function. The application will continue to accept the -h parameter
so that we can identify the environment home directory used by this application. However, we
also add the:

• -l parameter which allows us to identify the host and port used by this application to listen
for replication messages. This parameter is required unless the -L parameter is specified.

• -L parameter, which allows us to identify the local site as the group creator.

• -r parameter which allows us to specify other replicas.

• -p option, which is used to identify this replica's priority (recall that the priority is used as a
tie breaker for elections)

class RepMgrGSG
{
public:
 // Constructor.
 RepMgrGSG();
 // Initialization method. Creates and opens our environment handle.
 int init(RepConfigInfo* config);
 // The doloop is where all the work is performed.
 int doloop();
 // terminate() provides our shutdown code.
 int terminate();

private:
 // disable copy constructor.
 RepMgrGSG(const RepMgrGSG &);
 void operator = (const RepMgrGSG &);

 // internal data members.
 RepConfigInfo *app_config;
 DbEnv dbenv;

 // private methods.
 // print_stocks() is used to display the contents of our database.
 static int print_stocks(Db *dbp);
};

static void usage()
{
 cerr << "usage: " << progname << endl
 << "-h home-l|L host:port [-r host:port]"
 << "[-p priority]" << endl;

 cerr << "\t -h home directory (required)" << endl
 << "\t -l host:port (required unless -L is specified;"
 << "\t l stands for local)" << endl
 << "\t -L host:port (optional, L means group "

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 32

 << " creator)" << endl
 << "\t -r host:port (optional; r stands for replica; any "
 << "number of these may be specified)" << endl
 << "\t -p priority (optional: defaults to 100)" << endl;

 exit(EXIT_FAILURE);
}

Now we can begin working on our main() function. We begin by adding a couple of variables
that we will use to collect TCP/IP host and port information.

int main(int argc, char **argv)
{
 RepConfigInfo config;
 char ch, *portstr, *tmphost;
 int tmpport;
 int ret;

Now we collect our command line arguments. As we do so, we will configure host and port
information as required, and we will configure the application's election priority if necessary.

 // Extract the command line parameters
 while ((ch = getopt(argc, argv, "h:l:n:p:r:")) != EOF) {
 switch (ch) {
 case 'h':
 config.home = optarg;
 break;
 case 'L':
 config.this_host.creator = true; // FALLTHROUGH
 case 'l':
 config.this_host.host = strtok(optarg, ":");
 if ((portstr = strtok(NULL, ":")) == NULL) {
 cerr << "Bad host specification." << endl;
 usage();
 }
 config.this_host.port = (unsigned short)atoi(portstr);
 config.got_listen_address = true;
 break;
 case 'p':
 config.priority = atoi(optarg);
 break;
 case 'r':
 tmphost = strtok(optarg, ":");
 if ((portstr = strtok(NULL, ":")) == NULL) {
 cerr << "Bad host specification." << endl;
 usage();
 }
 tmpport = (unsigned short)atoi(portstr);
 config.addOtherHost(tmphost, tmpport);
 break;
 case '?':

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 33

 default:
 usage();
 }
 }

 // Error check command line.
 if ((!config.got_listen_address) || config.home == NULL)
 usage();

Having done that, the remainder of our main() function is left unchanged:

 RepMgrGSG runner;
 try {
 if((ret = runner.init(&config)) != 0)
 goto err;
 if((ret = runner.doloop()) != 0)
 goto err;
 } catch (DbException dbe) {
 cerr << "Caught an exception during initialization or"
 << " processing: " << dbe.what() << endl;
 }
err:
 runner.terminate();
 return 0;
}

Now we need to update our RepMgrGSG::init() method. Our updates are at first related to
configuring replication. First, we need to update the method so that we can identify the local
site to the environment handle (that is, the site identified by the -l command line option):

RepMgrGSG::RepMgrGSG() : app_config(0), dbenv(0)
{
}

int RepMgrGSG::init(RepConfigInfo *config)
{
 int ret = 0;

 app_config = config;

 dbenv.set_errfile(stderr);
 dbenv.set_errpfx(progname);

 DbSite *dbsite;
 dbenv.repmgr_site(app_config->this_host.host,
 app_config->this_host.port, &dbsite, 0);
 dbsite->set_config(DB_LOCAL_SITE, 1);
 if (app_config->this_host.creator)
 dbsite->set_config(DB_GROUP_CREATOR, 1);

 dbsite->close();

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 34

And we also add code to allow us to identify "other" sites to the environment handle (that is,
the sites that we identify using the -o command line option). To do this, we iterate over each
of the "other" sites provided to us using the -o command line option, and we add each one
individually in turn:

We also add code here to set the environment's priority.

 int i = 1;
 for (REP_HOST_INFO *cur = app_config->other_hosts;
 cur != NULL && i <= app_config->nrsites;
 cur = cur->next, i++) {
 dbenv.repmgr_site(cur->host, cur->port, &dbsite, 0);
 dbsite->set_config(DB_BOOTSTRAP_HELPER, 1);

 dbsite->close();
 }
 dbenv.rep_set_priority(app_config->priority);

We can now open our environment. Note that the flags we use to open the environment are
slightly different for a replicated application than they are for a non-replicated application.
Namely, replication requires the DB_INIT_REP flag.

Also, because we are using the Replication Manager, we must prepare our environment for
threaded usage. For this reason, we also need the DB_THREAD flag.

 dbenv.set_cachesize(0, CACHESIZE, 0);
 dbenv.set_flags(DB_TXN_NOSYNC, 1);

 try {
 dbenv.open(app_config->home,
 DB_CREATE |
 DB_INIT_LOCK |
 DB_INIT_LOG |
 DB_INIT_MPOOL |
 DB_INIT_REP |
 DB_INIT_TXN |
 DB_RECOVER |
 DB_THREAD;
 0);
 } catch(DbException dbe) {
 cerr << "Caught an exception during DB environment open." << endl
 << "Ensure that the home directory is created prior to "
 << "starting the application." << endl;
 ret = ENOENT;
 goto err;
 }

Finally, we start replication before we exit this method. Immediately after exiting this
method, our application will go into the RepMgrGSG::doloop() method, which is where the
bulk of our application's work is performed. We update that method in the next chapter.

 if ((ret = dbenv.repmgr_start(3, app_config->start_policy)) != 0)

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 35

 goto err;

err:
 return ret;
}

This completes our replication updates for the moment. We are not as yet ready to actually
run this program; there remains a few critical pieces left to add to it. However, the work that
we performed in this section represents a solid foundation for the remainder of our replication
work.

Replication Manager Permanent Message Handling

As described in Permanent Message Handling (page 7), messages are marked permanent if
they contain database modifications that should be committed at the replica. DB's replication
code decides if it must flush its transaction logs to disk depending on whether it receives
sufficient permanent message acknowledgments from the participating replicas. More
importantly, the thread performing the transaction commit blocks until it either receives
enough acknowledgments, or the acknowledgment timeout expires.

The Replication Manager is fully capable of managing permanent messages for you if
your application requires it (most do). Almost all of the details of this are handled by
the Replication Manager for you. However, you do have to set some policies that tell the
Replication Manager how to handle permanent messages.

There are two things that you have to do:

• Determine how many acknowledgments must be received by the master.

• Identify the amount of time that replicas have to send their acknowledgments.

Identifying Permanent Message Policies

You identify permanent message policies using the Note that you can set permanent message
policies at any time during the life of the application.

The following permanent message policies are available when you use the Replication
Manager:

Note

The following list mentions electable peer several times. This is simply another
environment that can be elected to be a master (that is, it has a priority greater
than 0). Do not confuse this with the concept of a peer as used for client to client
transfers. See Client to Client Transfer (page 67) for more information on client to
client transfers.

• DB_REPMGR_ACKS_ALL

All replicas must acknowledge the message within the timeout period. This policy should be
selected only if your replication group has a small number of replicas, and those replicas are
on extremely reliable networks and servers.

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 36

• DB_REPMGR_ACKS_ALL_AVAILABLE

All currently connected replication clients must acknowledge the message. This policy
will invoke the DB_EVENT_REP_PERM_FAILED event if fewer than a quorum of clients
acknowledged during that time.

• DB_REPMGR_ACKS_ALL_PEERS

All electable peers must acknowledge the message within the timeout period. This policy
should be selected only if your replication group is small, and its various environments are
on extremely reliable networks and servers.

• DB_REPMGR_ACKS_NONE

No permanent message acknowledgments are required. If this policy is selected, permanent
message handling is essentially "turned off." That is, the master will never wait for replica
acknowledgments. In this case, transaction log data is either flushed or not strictly
depending on the type of commit that is being performed (synchronous or asynchronous).

• DB_REPMGR_ACKS_ONE

At least one replica must acknowledge the permanent message within the timeout period.

• DB_REPMGR_ACKS_ONE_PEER

At least one electable peer must acknowledge the permanent message within the timeout
period.

• DB_REPMGR_ACKS_QUORUM

A quorum of electable peers must acknowledge the message within the timeout period.
A quorum is reached when acknowledgments are received from the minimum number of
environments needed to ensure that the record remains durable if an election is held. That
is, the master wants to hear from enough electable replicas that they have committed the
record so that if an election is held, the master knows the record will exist even if a new
master is selected.

By default, a quorum of electable peers must must acknowledge a permanent message in
order for it considered to have been successfully transmitted.

Setting the Permanent Message Timeout

The permanent message timeout represents the maximum amount of time the committing
thread will block waiting for message acknowledgments. If sufficient acknowledgments arrive
before this timeout has expired, the thread continues operations as normal. However, if this
timeout expires, the committing thread flushes its transaction log buffer before continuing
with normal operations.

You set the timeout value using the DbEnv::rep_set_timeout() method. When you do this,
you provide the DB_REP_ACK_TIMEOUT value to the which parameter, and the timeout value in
microseconds to the timeout parameter.

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 37

For example:

 dbenv->rep_set_timeout(DB_REP_ACK_TIMEOUT, 100);

This timeout value can be set at anytime during the life of the application.

Adding a Permanent Message Policy to RepMgrGSG

For illustration purposes, we will now update RepMgrGSG such that it requires only
one acknowledgment from a replica on transactional commits. Also, we will give this
acknowledgment a 500 microsecond timeout value. This means that our application's main
thread will block for up to 500 microseconds waiting for an acknowledgment. If it does not
receive at least one acknowledgment in that amount of time, DB will flush the transaction logs
to disk before continuing on.

This is a very simple update. We can perform the entire thing in RepMgrGSG::init()
immediately after we set the application's priority and before we open our environment
handle.

int RepMgrGSG::init(RepConfigInfo *config)
{
 int ret = 0;

 app_config = config;

 dbenv.set_errfile(stderr);
 dbenv.set_errpfx(progname);

 DbSite *dbsite;
 dbenv.repmgr_site(app_config->this_host.host,
 app_config->this_host.port, &dbsite, 0);
 dbsite->set_config(DB_LOCAL_SITE, 1);
 if (app_config->this_host.creator)
 dbsite->set_config(DB_GROUP_CREATOR, 1);

 dbsite->close();

 int i = 1;
 for (REP_HOST_INFO *cur = app_config->other_hosts;
 cur != NULL && i <= app_config->nrsites;
 cur = cur->next, i++) {
 dbenv.repmgr_site(cur->host, cur->port, &dbsite, 0);
 dbsite->set_config(DB_BOOTSTRAP_HELPER, 1);

 dbsite->close();
 }

 dbenv.rep_set_priority(app_config->priority);

 /* Permanent messages require at least one ack */
 dbenv.repmgr_set_ack_policy(DB_REPMGR_ACKS_ONE);

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 38

 /* Give 500 microseconds to receive the ack */
 dbenv.rep_set_timeout(DB_REP_ACK_TIMEOUT, 5);

 dbenv.set_cachesize(0, CACHESIZE, 0);
 dbenv.set_flags(DB_TXN_NOSYNC, 1);

 ...

Managing Election Times

Where it comes to elections, there are two timeout values with which you should be
concerned: election timeouts and election retries.

Managing Election Timeouts

When an environment calls for an election, it will wait some amount of time for the other
replicas in the replication group to respond. The amount of time that the environment will
wait before declaring the election completed is the election timeout.

If the environment hears from all other known replicas before the election timeout occurs,
the election is considered a success and a master is elected.

If only a subset of replicas respond, then the success or failure of the election is determined
by how many replicas have participated in the election. It only takes a simple majority of
replicas to elect a master. If there are enough votes for a given environment to meet that
standard, then the master has been elected and the election is considered a success.

However, if not enough replicas have participated in the election when the election timeout
value is reached, the election is considered a failure and a master is not elected. At this
point, your replication group is operating without a master, which means that, essentially,
your replicated application has been placed in read-only mode.

Note, however, that the Replication Manager will attempt a new election after a given amount
of time has passed. See the next section for details.

You set the election timeout value using DbEnv::rep_set_timeout(). To do so, specify
the DB_REP_ELECTION_TIMEOUT value to the which parameter and then a timeout value in
microseconds to the timeout parameter.

Managing Election Retry Times

In the event that a election fails (see the previous section), an election will not be attempted
again until the election retry timeout value has expired.

You set the retry timeout value using DbEnv::rep_set_timeout(). To do so, specify
the DB_REP_ELECTION_RETRY value to the which parameter and then a retry value in
microseconds to the timeout parameter.

Note that this flag is only valid when you are using the Replication Manager. If you are using
the Base APIs, then this flag is ignored.

Library Version 12.1.6.2 The DB Replication Manager

3/28/2016 Using Replication with DB Page 39

Managing Connection Retries

In the event that a communication failure occurs between two environments in a
replication group, the Replication Manager will wait a set amount of time before
attempting to re-establish the connection. You can configure this wait value using
DbEnv::rep_set_timeout(). To do so, specify the DB_REP_CONNECTION_RETRY value to the
which parameter and then a retry value in microseconds to the timeout parameter.

Managing Heartbeats

If your replicated application experiences few updates, it is possible for the replication group
to lose a master without noticing it. This is because normally a replicated application only
knows that a master has gone missing when update activity causes messages to be passed
between the master and replicas.

To guard against this, you can configure a heartbeat. The heartbeat must be configured for
both the master and each of the replicas.

On the master, you configure the application to send a heartbeat on a defined interval when it
is otherwise idle. Do this by using the DB_REP_HEARTBEAT_SEND value to the which parameter
of the DbEnv::rep_set_timeout() method. You must also provide the method a value
representing the period between heartbeats in microseconds. Note that the heartbeat is sent
only if the system is idle.

On the replica, you configure the application to listen for a heartbeat. The time that you
configure here is the amount of time the replica will wait for some message from the master
(either the heartbeat or some other message) before concluding that the connection is lost.
You do this using the DB_REP_HEARTBEAT_MONITOR value to the which parameter of the
DbEnv::rep_set_timeout() method and a timeout value in microseconds.

For best results, configure the heartbeat monitor for a longer time interval than the heartbeat
send interval.

3/28/2016 Using Replication with DB Page 40

Chapter 4. Replica versus Master Processes
Every environment participating in a replicated application must know whether it is a master
or replica. The reason for this is because, simply, the master can modify the database
while replicas cannot. As a result, not only will you open databases differently depended
on whether the environment is running as a master, but the environment will frequently
behave quite a bit differently depending on whether it thinks it is operating as the read/write
interface for your database.

Moreover, an environment must also be capable of gracefully switching between master and
replica states. This means that the environment must be able to detect when it has switched
states.

Not surprisingly, a large part of your application's code will be tied up in knowing which state
a given environment is in and then in the logic of how to behave depending on its state.

As an alternative, write forwarding simplifies adding replication to an application. Once
configured, there is no need to confine write operations to the master or even to know which
site is the master. For more information, see Configuring for Write Forwarding (page 53).

This chapter shows you how to determine your environment's state, and it then shows you
some sample code on how an application might behave depending on whether it is a master or
a replica in a replicated application.

Determining State

In order to determine whether your code is running as a master or a replica, you implement
an event handling callback, which we initially describe in Event Handling (page 10).
When the current environment becomes a client — including at application startup — the
DB_EVENT_REP_CLIENT event is raised. When an election is held and a replica is elected to
be a master, the DB_EVENT_REP_MASTER event is raised on the newly elected master and the
DB_EVENT_REP_NEWMASTER is raised on the other replicas.

The implementation of the event handling callback is fairly simple. First you pass a structure
to the environment handle that you can use to record the environment's state, and then you
implement a switch statement within the callback that you use to record the current state,
depending on the arriving event.

For example:

#include <db_cxx.h>
/* Forward declaration */
void *event_callback(DbEnv *, u_int32_t, void *);

...

/* The structure we use to track our environment's state */
typedef struct {
 int is_master;
} APP_DATA;

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 41

...

/*
 * Inside our main() function, we declare an APP_DATA variable.
 */
APP_DATA my_app_data;
my_app_data.is_master = 0; /* Assume we start as a replica */

...

/*
 * Now we open our environment handle and set the APP_DATA structure
 * to it's app_private member.
 */
DbEnv *dbenv = new DbEnv(0);
dbenv->set_app_private(&my_app_data);

/* Having done that, register the callback with the
 * Berkeley DB library
 */
dbenv->set_event_notify(event_callback);

That done, we still need to implement the callback itself. This implementation can be fairly
trivial.

/*
 * A callback used to determine whether the local environment is a
 * replica or a master. This is called by the Replication Manager
 * when the local environment changes state.
 */
void *
event_callback(DbEnv *dbenv, u_int32_t which, void *info)
{
 APP_DATA *app = dbenv->get_app_private();

 info = NULL; /* Currently unused. */

 switch (which) {
 case DB_EVENT_REP_MASTER:
 app->is_master = 1;
 break;

 case DB_EVENT_REP_CLIENT:
 app->is_master = 0;
 break;

 case DB_EVENT_REP_STARTUPDONE: /* fallthrough */
 case DB_EVENT_REP_NEWMASTER:
 /* Ignore. */

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 42

 break;

 default:
 dbenv->errx(dbenv, "ignoring event %d", which);
 }
}

Notice how we access the APP_DATA information using the environment handle's app_private
data member. We also ignore the DB_EVENT_REP_NEWMASTER and DB_EVENT_REP_STARTUPDONE
cases since these are not relevant for simple replicated applications.

Of course, this only gives us the current state of the environment. We still need the code that
determines what to do when the environment changes state and how to behave depending on
the state (described in the next section).

Processing Loop

Typically the central part of any replication application is some sort of a continuous loop that
constantly checks the state of the environment (whether it is a replica or a master), opens
and/or closes the databases as is necessary, and performs other useful work. A loop such as
this one must of necessity take special care to know whether it is operating on a master or a
replica environment because all of its activities are dependent upon that state.

The flow of activities through the loop will generally be as follows:

1. Check whether the environment has changed state. If it has, you might want to reopen
your database handles, especially if you opened your replica's database handles as
read-only. In this case, you might need to reopen them as read-write. However, if
you always open your database handles as read-write, then it is not automatically
necessary to reopen the databases due to a state change. Instead, you could check for a
DB_REP_HANDLE_DEAD return code when you use your database handle(s). If you see this,
then you need to reopen your database handle(s).

2. If the databases are closed, create new database handles, configure the handle as
is appropriate, and then open the databases. Note that handle configuration will be
different, depending on whether the handle is opened as a replica or a master. At a
minimum, the master should be opened with database creation privileges, whereas the
replica does not need to be. You must also open the master such that its databases are
read-write. You can open replicas with read-only databases, so long as you are prepared
to close and then reopen the handle in the event the client becomes a master.

Also, note that if the local environment is a replica, then it is possible that databases do
not currently exist. In this case, the database open attempts will fail. Your code will have
to take this corner case into account (described below).

3. Once the databases are opened, check to see if the local environment is a master. If it is,
do whatever it is a master should do for your application.

Remember that the code for your master should include some way for you to tell the
master to exit gracefully.

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 43

4. If the local environment is not a master, then do whatever it is your replica environments
should do. Again, like the code for your master environments, you should provide a way
for your replicas to exit the processing loop gracefully.

The following code fragment illustrates these points (note that we fill out this fragment with a
working example next in this chapter):

/* loop to manage replication activities */

Db *dbp;
int ret;
APP_DATA *app_data;
u_int32_t flags;

dbp = NULL;
ret = 0;

/*
 * Remember that for this to work, an APP_DATA struct would have first
 * had to been set to the environment handle's app_private data
 * member. (dbenv is presumably declared and opened in another part of
 * the code.)
 */
app_data = dbenv->get_app_private();

/*
 * Infinite loop. We exit depending on how the master and replica code
 * is written.
 */
for (;;) {
 /* If dbp is not opened, we need to open it. */
 if (dbp == 0) {
 /*
 * Create the handle and then configure it. Before you open
 * it, you have to decide what open flags to use:
 */
 dbp = new Db(&dbenv, 0);

 /*
 * Now you can open your database handle.
 *
 * One thing to watch out for is a case where the databases
 * you are trying to open do not yet exist. This can happen
 * for replicas where the databases are being opened
 * read-only. If this happens, ENOENT is returned by the
 * open() call.
 */
 try {
 dbp->open(NULL, DATABASE, NULL, DB_BTREE,

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 44

 app_data->is_master ? DB_CREATE | DB_AUTO_COMMIT :
 DB_AUTO_COMMIT, 0);
 } catch(DbException dbe) {
 if (dbe.get_errno() == ENOENT) {
 cout << "No stock db available yet - retrying." << endl;
 try {
 dbp->close(0);
 } catch (DbException dbe2) {
 cout << "Unexpected error closing after failed" <<
 " open, message: " << dbe2.what() << endl;
 dbp = NULL;
 goto err;
 }
 dbp = NULL;
 sleep(SLEEPTIME);
 continue;
 } else {
 dbenv.err(ret, "DB->open");
 throw dbe;
 }
 }
 }

 /*
 * Now that the databases have been opened, continue with general
 * processing, depending on whether we are a master or a replica.
 */
 if (app_data->is_master) {
 /*
 * Do master stuff here. Don't forget to include a way to
 * gracefully exit the loop. */
 */
 } else {
 /*
 * Do replica stuff here. As is the case with the master
 * code, be sure to include a way to gracefully exit the
 * loop.
 */
 }
}

Example Processing Loop

In this section we take the example processing loop that we presented in the previous
section and we flesh it out to provide a more complete example. We do this by updating
the doloop() function that our original transaction application used (see Method:
SimpleTxn::doloop() (page 17)) to fully support our replicated application.

In the following example code, code that we add to the original example is presented in bold.

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 45

To begin, we include a new header file into our application so that we can check for the
ENOENT return value later in our processing loop. We also define our APP_DATA structure, and
we define a sleeptime value. Finally, we update RepMgrGSG to have a new method for our
event notification callback, and to add a new data member for our APP_DATA data member.
#include <db_cxx.h>
#include <iostream>
#include <errno.h>

...
// Skipping all the RepHostInfoObj and RepConfigInfo code, which does not
// change.
...

using std::cout;
using std::cin;
using std::cerr;
using std::endl;
using std::flush;

#define CACHESIZE (10 * 1024 * 1024)
#define DATABASE "quote.db"
#define SLEEPTIME 3

const char *progname = "excxx_repquote_gsg_repmgr";

// Struct used to store information in Db app_private field.
typedef struct {
 int is_master;
} APP_DATA;

class RepMgrGSG
{
public:
 // Constructor.
 RepMgrGSG();
 // Initialization method. Creates and opens our environment handle.
 int init(RepConfigInfo* config);
 // The doloop is where all the work is performed.
 int doloop();
 // terminate() provides our shutdown code.
 int terminate();

 // event notification callback
 static void
 event_callback(DbEnv * dbenv, u_int32_t which, void *info);

private:
 // disable copy constructor.
 RepMgrGSG(const RepMgrGSG &);

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 46

 void operator = (const RepMgrGSG &);

 // internal data members.
 APP_DATA app_data;
 RepConfigInfo *app_config;
 DbEnv dbenv;

 // private methods.
 // print_stocks() is used to display the contents of our database.
 static int print_stocks(Db *dbp);
};

That done, we can skip the main() method, because it does not change. Instead, we skip
down to our RepMgrGSG constructor where we initialize our APP_DATA is_master data
member:

RepMgrGSG::RepMgrGSG() : app_config(0), dbenv(0)
{
 app_data.is_master = 0; // assume I start out as client
}

That done, we must also update RepMgrGSG::init() to do a couple of things. First, we
need to register our event callback with the environment handle. We also need to make our
APP_DATA data member available through our environment handle's app_private field. This
is a fairly trivial update, and it happens at the top of the method (we skip the rest of the
method's listing since it does not change):

int RepMgrGSG::init(RepConfigInfo *config)
{
 int ret = 0;

 app_config = config;

 dbenv.set_errfile(stderr);
 dbenv.set_errpfx(progname);
 dbenv.set_app_private(&app_data);
 dbenv.set_event_notify(event_callback);

 ...

That done, we need to implement our event_callback() callback. Note that what we use
here is no different from the callback that we described in the previous section. However, for
the sake of completeness we provide the implementation here again.

/*
 * A callback used to determine whether the local environment is a
 * replica or a master. This is called by the Replication Manager
 * when the local replication environment changes state.
 */
void RepMgrGSG::event_callback(DbEnv *dbenv, u_int32_t which, void *info)

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 47

{
 APP_DATA *app = dbenv->get_app_private();

 info = NULL; /* Currently unused. */

 switch (which) {
 case DB_EVENT_REP_MASTER:
 app->is_master = 1;
 break;

 case DB_EVENT_REP_CLIENT:
 app->is_master = 0;
 break;

 case DB_EVENT_REP_STARTUPDONE: /* fallthrough */
 case DB_EVENT_REP_NEWMASTER:
 /* Ignore. */
 break;

 default:
 dbenv->errx(dbenv, "ignoring event %d", which);
 }
}

That done, we need to update our doloop() method.

We begin by updating our database handle open flags to determine which flags to use,
depending on whether the application is running as a master.

#define BUFSIZE 1024
int RepMgrGSG::doloop()
{
 Db *dbp;
 Dbt key, data;
 char buf[BUFSIZE], *rbuf;
 int ret;

 dbp = 0;
 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));
 ret = 0;

 for (;;) {
 if (dbp == 0) {
 dbp = new Db(&dbenv, 0);

 try {
 dbp->open(NULL, DATABASE, NULL, DB_BTREE,
 app_data.is_master ? DB_CREATE | DB_AUTO_COMMIT :
 DB_AUTO_COMMIT, 0);

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 48

When we open the database, we modify our error handling to account for the case where
the database does not yet exist. This can happen if our code is running as a replica and the
Replication Manager has not yet had a chance to create the databases for us. Recall that
replicas never write to their own databases directly, and so they cannot create databases on
their own.

If we detect that the database does not yet exist, we simply close the database handle, sleep
for a short period of time and then continue processing. This gives the Replication Manager a
chance to create the database so that our replica can continue operations.
 } catch(DbException dbe) {
 /* It is expected that this condition will be triggered
 * when client sites start up.
 * It can take a while for the master site to be found
 * and synced, and no DB will be available until then.
 */
 if (dbe.get_errno() == ENOENT) {
 cout << "No stock db available yet - "
 << "retrying." << endl;
 try {
 dbp->close(0);
 } catch (DbException dbe2) {
 cout << "Unexpected error closing after failed"
 << " open, message: " << dbe2.what() << endl;
 dbp = NULL;
 goto err;
 }
 dbp = NULL;
 sleep(SLEEPTIME);
 continue;
 } else {
 dbenv.err(ret, "DB->open");
 throw dbe;
 }
 }
 }

Next we modify our prompt, so that if the local process is running as a replica, we can tell
from the shell that the prompt is for a read-only process.
 cout << "QUOTESERVER" ;
 if (!app_data.is_master)
 cout << "(read-only)";
 cout << "> " << flush;

When we collect data from the prompt, there is a case that says if no data is entered
then show the entire stocks database. This display is performed by our print_stocks()
method (which has not required a modification since we first introduced it in Method:
SimpleTxn::print_stocks() (page 20)).

When we call print_stocks(), we check for a dead replication handle. Dead replication
handles happen whenever a replication election results in a previously committed transaction

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 49

becoming invalid. This is an error scenario caused by a new master having a slightly older
version of the data than the original master and so all replicas must modify their database(s)
to reflect that of the new master. In this situation, some number of previously committed
transactions may have to be unrolled. From the replica's perspective, the database handles
should all be closed and then opened again.

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 break;
 if (strtok(&buf[0], " \t\n") == NULL) {
 switch ((ret = print_stocks(dbp))) {
 case 0:
 continue;
 case DB_REP_HANDLE_DEAD:
 (void)dbp->close(DB_NOSYNC);
 cout << "closing db handle due to rep handle dead" << endl;
 dbp = NULL;
 continue;
 default:
 dbp->err(ret, "Error traversing data");
 goto err;
 }
 }
 rbuf = strtok(NULL, " \t\n");
 if (rbuf == NULL || rbuf[0] == '\0') {
 if (strncmp(buf, "exit", 4) == 0 ||
 strncmp(buf, "quit", 4) == 0)
 break;
 dbenv.errx("Format: TICKER VALUE");
 continue;
 }

That done, we need to add a little error checking to our command prompt to make sure the
user is not attempting to modify the database at a replica. Remember, replicas must never
modify their local databases on their own. This guards against that happening due to user
input at the prompt.
 if (!app_data.is_master) {
 dbenv->errx(dbenv, "Can't update at client");
 continue;
 }

 key.set_data(buf);
 key.set_size((u_int32_t)strlen(buf));

 data.set_data(rbuf);
 data.set_size((u_int32_t)strlen(rbuf));

 if ((ret = dbp->put(NULL, &key, &data, 0)) != 0)
 {
 dbp->err(ret, "DB->put");

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 50

 if (ret != DB_KEYEXIST)
 goto err;
 }
 }

err: if (dbp != 0)
 (void)dbp->close(dbp, DB_NOSYNC);

 return (ret);
}

With that completed, we are all done updating our application for replication. The only
remaining method, print_stocks(), is unmodified from when we originally introduced it. For
details on that function, see Method: SimpleTxn::print_stocks() (page 20).

Running It

To run our replicated application, we need to make sure each participating environment has
its own unique home directory. We can do this by running each site on a separate networked
machine, but that is not strictly necessary; multiple instances of this code can run on the
same machine provided the environment home restriction is observed.

To run a process, make sure the environment home exists and then start the process using
the -h option to specify that directory. You must also use the -l or -L option to identify the
local host and port that this process will use to listen for replication messages (-L means that
this is a group creator), and the -r option to identify the other processes in the replication
group. Finally, use the -p option to specify a priority. The process that you designate to have
the highest priority will become the master.

> mkdir env1
> ./RepMgrGSG -h env1 -L localhost:8080 -p 10
No stock database yet available.
No stock database yet available.

Now, start another process. This time, change the environment home to something else, use
the -l flag to at least change the port number the process is listening on, and use the -r
option to identify the host and port of the other replication process:

> mkdir env2
> ./RepMgrGSG -h env2 -l localhost:8081 -r localhost:8080 -p 20

After a short pause, the second process should display the master prompt:

QUOTESERVER >

And the first process should display the read-only prompt:

QUOTESERVER (read-only)>

Now go to the master process and give it a couple of stocks and stock prices:

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 51

QUOTESERVER> FAKECO 9.87
QUOTESERVER> NOINC .23
QUOTESERVER>

Then, go to the replica and hit return at the prompt to see the new values:

QUOTESERVER (read-only)>
 Symbol Price
 ====== =====
 FAKECO 9.87
 NOINC .23
QUOTESERVER (read-only)>

Doing the same at the master results in the same thing:

QUOTESERVER>
 Symbol Price
 ====== =====
 FAKECO 9.87
 NOINC .23
QUOTESERVER>

You can change a stock by simply entering the stock value and new price at the master's
prompt:

QUOTESERVER> FAKECO 10.01
QUOTESERVER>

Then, go to either the master or the replica to see the updated database. On the master:

QUOTESERVER>
 Symbol Price
 ====== =====
 FAKECO 10.01
 NOINC .23
QUOTESERVER>

And on the replica:

QUOTESERVER (read-only)>
 Symbol Price
 ====== =====
 FAKECO 10.01
 NOINC .23
QUOTESERVER (read-only)>

Finally, to quit the applications, simply type quit at both prompts. On the replica:

QUOTESERVER (read-only)> quit
>

And on the master as well:

QUOTESERVER> quit

Library Version 12.1.6.2 Replica versus Master Processes

3/28/2016 Using Replication with DB Page 52

>

3/28/2016 Using Replication with DB Page 53

Chapter 5. Configuring for Write Forwarding
By default, write operations cannot be performed on a replication client site. Replication
Manager provides automatic write forwarding as a configurable option for applications with
simple data and transaction models. (See the Configuring for Write Forwarding section in the
Berkeley DB Programmer's Reference Guide for more information.)

In this chapter, we configure write forwarding for the simple transaction-protected DB
application that you created in the Transactional Application (page 12) chapter.

Application with Write Forwarding Overview

Write forwarding simplifies adding replication to the stock market quotes database
application. Once write forwarding is configured, this application allows any site to accept
stock quote updates. There is no need to confine write operations to the master or even to
know which site is the master.

The application operates by presenting you with a command line prompt. You then enter the
stock symbol and its value, separated by a space. The application takes this information and
writes it to the database.

To see the contents of the database, simply press return at the command prompt.

To quit the application, type 'quit' or 'exit' at the command prompt.

For example, the following illustrates the application's usage. In it, we use entirely fictitious
stock market symbols and price values.

node01> ./excxx_repquote_gsg_RepMgrWrforGSG -h env_home_dir -L node01:5000
QUOTESERVER> stock1 88
QUOTESERVER> stock2 .08
QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88
 stock2 .08

where L is used to identify the local site as group creator, which creates the database and
starts this site as master.

With write forwarding, we can add a new stock value in the client site. In the client site
(node02), specify the new local client site and the existing remote site in the replication
group.

node02> ./excxx_repquote_gsg_RepMgrWrforGSG -l node02:5001 -r node01:5000
QUOTESERVER> stock3 99
QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88

../../programmer_reference/comm_repsites.html#conf_writeforw

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 54

 stock2 .08
 stock3 99

QUOTESERVER> quit

Finally, verify that the stock3 value replicated to the master:

QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88
 stock2 .08
 stock3 99

QUOTESERVER> quit

Program Listing

Our example program builds from the simple transactional application you created in the
Transactional Application (page 12) chapter and configures write forwarding. The application
is network-aware, so you can specify things like host names and ports from the command line.
This program has additional error handling for replication errors.

When using replication with write forwarding, there are several benefits for your application
code:

• You do not need to create an event handler to detect changes of the master.

• You do not need to use app_data to track whether the current site is master.

• You do not need to provide an error for put operations on the client.

Class: RepConfigInfo

Before we begin, we present a class that we will use to maintain useful information for us.

The class that we create is called RepConfigInfo .

#include <db_cxx.h>

class RepConfigInfo {
public:
 RepConfigInfo();
 virtual ~RepConfigInfo();

 void addOtherHost(char* host, int port);

public:
 u_int32_t start_policy;
 char* home;

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 55

 bool got_listen_address;
 REP_HOST_INFO this_host;
 int nrsites;
 // used to store a set of optional other hosts.
 REP_HOST_INFO *other_hosts;
};

RepConfigInfo::RepConfigInfo()
{
 start_policy = DB_REP_ELECTION;
 home = "TESTDIR";
 got_listen_address = false;
 nrsites = 0;
 other_hosts = NULL;
}

RepConfigInfo::~RepConfigInfo()
{
 // release any other_hosts structs.
 if (other_hosts != NULL) {
 REP_HOST_INFO *CurItem = other_hosts;
 while (CurItem->next != NULL) {
 REP_HOST_INFO *TmpItem = CurItem->next;
 free(CurItem);
 CurItem = TmpItem;
 }
 free(CurItem);
 }
 other_hosts = NULL;
}

Class: excxx_repquote_gsg_RepMgrWrforGSG

Our example will instantiate a class, RepMgrWrforGSG, that performs all our work for us.
Before we implement our main() function, we show the RepMgrWrforGSG class declaration.

First, we provide some declarations and definitions that are needed later in our example. One
is the size of our cache, which we keep deliberately small for this example, and the other is
the name of our database. Also, you can define a sleep time, which sets the time that a site
waits before it retries synchronizing with the master. We also provide a global variable that is
the name of our program; this is used for error reporting later on.

#include <iostream>
#include <errno.h>
#include <db_cxx.h>
#include "RepWrforConfigInfo.h"

using std::cout;

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 56

using std::cin;
using std::cerr;
using std::endl;
using std::flush;

#define CACHESIZE (10 * 1024 * 1024)
#define DATABASE "quote.db"
#define SLEEPTIME 3

const char *progname = "excxx_repquote_gsg_wrfor";

#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <direct.h>
#define sleep(s) Sleep(1000 * (s))

extern "C" {
 extern int getopt(int, char * const *, const char *);
 extern char *optarg;
}
#endif

And then we define our RepMgrWrforGSG class:

class RepMgrWrforGSG
{
public:
 // Constructor.
 RepMgrWrforGSG();
 // Initialization method. Creates and opens our environment handle.
 int init(RepConfigInfo* config);
 // The doloop is where all the work is performed.
 int doloop();
 // terminate() provides our shutdown code.
 int terminate();

private:
 // disable copy constructor.
 RepMgrWrforGSG(const RepMgrWrforGSG &);
 void operator = (const RepMgrWrforGSG &);

 // internal data members.
 RepConfigInfo *app_config;
 DbEnv dbenv;

 // private methods.
 // print_stocks() is used to display the contents of our database.
 static int print_stocks(Db *dbp);
};

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 57

Note that we show the implementation of the various RepMgrWrforGSG methods later in this
section.

Function: usage()

Our usage() function manages the following command line arguments:

static void usage()
{
 cerr << "usage: " << progname << endl
 << "-h home -l|-L host:port [-r host:port]" << endl;

 cerr
 << "\t -h home directory (required)" << endl
 << "\t -l host:port (required unless -L is specified;"
 << "\t l stands for local)" << endl
 << "\t -L host:port (optional, L means group creator)" << endl
 << "\t -r host:port (optional; r stands for remote; any "
 << "number of these" << endl
 << "\t may be specified)" << endl;

 exit(EXIT_FAILURE);
}

where:

• -h

Identifies the environment home directory. You must specify this option.

• -l

Identifies the host and port used by this site. You must specify this option unless -L is
specified.

• -L

Identifies the local site as group creator. You must specify this option unless -l is specified.

• -r

Optionally identifies another site participating in this replication group.

Function: main()

Now we provide our main() function. This is a trivial function whose only job is to collect
command line information, then instantiate a RepMgrWrforGSG object, run it, then terminate
it.

We begin by declaring some useful variables. Of these, note that we instantiate our
RepConfigInfo object here. Recall that this is used to store information useful to our code.

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 58

int main(int argc, char **argv)
{
 RepConfigInfo config;
 char ch, *last_colon, *portstr, *tmphost;
 int tmpport;
 int ret;

Then we collect our command line information:

 // Extract the command line parameters
 while ((ch = getopt(argc, argv, "h:l:L:r:")) != EOF) {
 switch (ch) {
 case 'h':
 config.home = optarg;
 break;
 case 'L':
 config.this_host.creator = true; // FALLTHROUGH
 case 'l':
 config.this_host.host = optarg;
 /*
 * The final colon in host:port string is the
 * boundary between the host and the port portions
 * of the string.
 */
 if ((last_colon = strrchr(optarg, ':')) == NULL) {
 cerr << "Bad local host specification." << endl;
 usage();
 }
 /*
 * Separate the host and port portions of the
 * string for further processing.
 */
 portstr = last_colon + 1;
 *last_colon = '\0';
 config.this_host.port = (unsigned short)atoi(portstr);
 config.got_listen_address = true;
 break;
 case 'r':
 tmphost = optarg;
 /*
 * The final colon in host:port string is the
 * boundary between the host and the port portions
 * of the string.
 */
 if ((last_colon = strrchr(tmphost, ':')) == NULL) {
 cerr << "Bad remote host specification." << endl;
 usage();
 }
 /*
 * Separate the host and port portions of the

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 59

 * string for further processing.
 */
 portstr = last_colon + 1;
 *last_colon = '\0';
 tmpport = (unsigned short)atoi(portstr);
 config.addOtherHost(tmphost, tmpport);
 break;
 case '?':
 default:
 usage();
 }
 }

 // Error check command line.
 if ((!config.got_listen_address) || config.home == NULL)
 usage();

Now we instantiate and initialize our RepMgrWrforGSG class, which is what is responsible
for doing all our real work. The RepMgrWrforGSG::init() method creates and opens our
environment handle.

 RepMgrWrforGSG runner;
 try {
 if((ret = runner.init(&config)) != 0)
 goto err;

Then we call the RepMgrWrforGSG::doloop() method, which is where the actual
transactional work is performed for this application.

 if((ret = runner.doloop()) != 0)
 goto err;

Finally, catch exceptions and terminate the program. Note, again, that in a traditional
transactional application all databases would be closed here. In our replicated application,
the database will usually be closed in the doloop() function, but we also conditionally close
the database here to handle some error cases.

 } catch (DbException dbe) {
 cerr << "Caught an exception during initialization or"
 << " processing: " << dbe.what() << endl;
 }
err:
 runner.terminate();
 return 0;
}

Method: RepMgrWrforGSG::init()

The RepMgrWrforGSG::init() method is used to create and open our environment handle.

First, we show the class constructor implementation, which is only used to initialize a few
variables:

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 60

RepMgrWrforGSG::RepMgrWrforGSG() : app_config(0), dbenv((u_int32_t)0)
{
}

We now provide the init() method implementation. You can now configure and
start Replication Manager with write forwarding. To configure write forwarding, use
rep_set_config with the DB_REPMGR_CONF_FORWARD_WRITES option:

int RepMgrWrforGSG::init(RepConfigInfo *config)
{
 int ret = 0;

 app_config = config;

 dbenv.set_errfile(stderr);
 dbenv.set_errpfx(progname);

 DbSite *dbsite;
 dbenv.repmgr_site(app_config->this_host.host,
 app_config->this_host.port, &dbsite, 0);
 dbsite->set_config(DB_LOCAL_SITE, 1);
 if (app_config->this_host.creator)
 dbsite->set_config(DB_GROUP_CREATOR, 1);

 dbsite->close();

 int i = 1;
 for (REP_HOST_INFO *cur = app_config->other_hosts;
 cur != NULL && i <= app_config->nrsites;
 cur = cur->next, i++) {

 dbenv.repmgr_site(cur->host, cur->port, &dbsite, 0);
 dbsite->set_config(DB_BOOTSTRAP_HELPER, 1);

 dbsite->close();
 }

 // We can now open our environment, although we're not ready to
 // begin replicating. However, we want to have a dbenv around
 // so that we can send it into any of our message handlers.
 dbenv.set_cachesize(0, CACHESIZE, 0);
 dbenv.set_flags(DB_TXN_NOSYNC, 1);

 try {
 dbenv.open(app_config->home, DB_CREATE | DB_RECOVER |
 DB_THREAD | DB_INIT_REP | DB_INIT_LOCK | DB_INIT_LOG |
 DB_INIT_MPOOL | DB_INIT_TXN, 0);
 } catch(DbException dbe) {
 cerr << "Caught an exception during DB environment open." << endl
 << "Ensure that the home directory is created prior"

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 61

 << "to starting the application." << endl;
 ret = ENOENT;
 goto err;
 }

 /* Configure Replication Manager write forwarding. */
 dbenv.rep_set_config(DB_REPMGR_CONF_FORWARD_WRITES, 1);

 if ((ret = dbenv.repmgr_start(3, app_config->start_policy)) != 0)
 goto err;

err:
 return ret;
}

Finally, we present the RepMgrWrforGSG::terminate() method here. All this does is close
the environment handle.

int RepMgrWrforGSG::terminate()
{
 try {
 dbenv.close(0);
 } catch (DbException dbe) {
 cerr << "error closing environment: " << dbe.what() << endl;
 }
 return 0;
}

Method: RepMgrWrforGSG::doloop()

Having written our main() function and support utility methods, we now implement our
application's primary data processing method. This method provides a command prompt at
which the user can enter a stock ticker value and a price for that value. This information is
then entered to the database.

To display the database, simply enter return at the prompt.

To begin, we declare a database pointer, several Dbt variables, and the usual assortment of
variables used for buffers and return codes. We also initialize all of this.

#define BUFSIZE 1024
int RepMgrWrforGSG::doloop()
{
 Dbt key, data;
 Db *dbp;
 char buf[BUFSIZE], *rbuf;
 int ret;

 dbp = 0;
 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 62

 ret = 0;

Next, we begin the loop and we immediately open our database if it has not already been
opened.

If -L is set, it specifies the need to create the database for the initial group creator startup.
The database will be replicated to the other sites when they first start up. The database will
already exist on each site for subsequent startups.

Note that there is some logic for a site to retry in case it needs time to synchronize with the
master using SLEEPTIME.
 for (;;) {
 if (dbp == 0) {
 dbp = new Db(&dbenv, 0);

 try {
 dbp->open(NULL, DATABASE, NULL, DB_BTREE,
 app_config->
 this_host.creator ? DB_CREATE | DB_AUTO_COMMIT :
 DB_AUTO_COMMIT, 0);
 } catch(DbException dbe) {
 // It is expected that this condition will
 // be triggered when client sites start up. It can
 // take a while for the master site to be found
 // and synced, and no DB will be available until then.
 if (dbe.get_errno() == ENOENT) {
 cout << "No stock db
 available yet - retrying." << endl;
 try {
 dbp->close(0);
 } catch (DbException dbe2) {
 cout << "Unexpected error closing after failed" <<
 " open, message: " << dbe2.what() << endl;
 dbp = NULL;
 goto err;
 }
 dbp = NULL;
 sleep(SLEEPTIME);
 continue;
 } else {
 dbenv.err(ret, "DB->open");
 throw dbe;
 }
 }
 }

Now we implement our command prompt. If the user enters the keywords exit or quit,
the loop is exited and the application ends. If the user enters nothing and instead simply
presses return, the entire contents of the database is displayed. We use our print_stocks()
method to display the database. (That implementation is shown next in this chapter.)

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 63

We also now check for a dead replication handle, which can occur in rare cases when a
new master causes a previously committed transaction to be rolled back. In such cases, all
database handles must be closed and opened again.

Remember that very little error checking is performed on the data entered at this prompt. If
the user fails to enter at least one space in the value string, a simple help message is printed
and the prompt is returned to the user.

 cout << "QUOTESERVER" ;
 cout << "> " << flush;

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 break;
 if (strtok(&buf[0], " \t\n") == NULL) {
 switch ((ret = print_stocks(dbp))) {
 case 0:
 continue;
 case DB_REP_HANDLE_DEAD:
 (void)dbp->close(DB_NOSYNC);
 cout << "closing db handle due to rep handle dead" << endl;
 dbp = NULL;
 continue;
 default:
 dbp->err(ret, "Error traversing data");
 goto err;
 }
 }
 rbuf = strtok(NULL, " \t\n");
 if (rbuf == NULL || rbuf[0] == '\0') {
 if (strncmp(buf, "exit", 4) == 0 ||
 strncmp(buf, "quit", 4) == 0)
 break;
 dbenv.errx("Format: TICKER VALUE");
 continue;
 }

Now we assign data to the Dbts that we will use to write the new information to the database.

 key.set_data(buf);
 key.set_size((u_int32_t)strlen(buf));

 data.set_data(rbuf);
 data.set_size((u_int32_t)strlen(rbuf));

Having done that, we can write the new information to the database. Here, the reason we do
not need an explicit commit on this put operation is that it uses the implicit NULL txnid, so
each one is automatically committed. Also, the application retries if a deadlock, timeout or
permission error occurs. A forwarded put operation can return a timeout error if the operation
takes too long and a permission error if there is currently no master.

 if ((ret = dbp->put(NULL, &key, &data, 0)) != 0)

Library Version 12.1.6.2 Configuring for Write Forwarding

3/28/2016 Using Replication with DB Page 64

 {
 dbp->err(ret, "DB->put");
 switch (ret) {
 case DB_REP_HANDLE_DEAD:
 /* Must close and reopen the handle, then can retry. */
 (void)dbp->close(0);
 dbp = NULL;
 /* FALLTHROUGH */
 case DB_LOCK_DEADLOCK:
 case DB_TIMEOUT:
 case EACCES:
 dbenv.errx("Could not update data, retry operation");
 case DB_KEYEXIST:
 continue;
 default:
 dbp->err(ret, "Error updating data");
 goto err;
 }
 }
 }

Finally, we close our database before returning from the method.

err: if (dbp != NULL) {
 (void)dbp->close(DB_NOSYNC);
 cout << "database closed" << endl;
 }

 return (ret);
}

Method: RepMgrWrforGSG::print_stocks()

This function is unmodified from when we originally introduced it. For details on that
function, see Method: SimpleTxn::print_stocks() (page 20).

3/28/2016 Using Replication with DB Page 65

Chapter 6. Additional Features
Beyond the basic functionality that we have discussed so far in this book, there are several
replication features that you should understand. These are all optional to use, but provide
useful functionality under the right circumstances.

These additional features are:

1. Delayed Synchronization (page 65)

2. Managing Blocking Operations (page 65)

3. Stop Auto-Initialization (page 66)

4. Client to Client Transfer (page 67)

5. Bulk Transfers (page 68)

Delayed Synchronization

When a replication group has a new master, all replicas must synchronize with that master.
This means they must ensure that the contents of their local database(s) are identical to that
contained by the new master.

This synchronization process can result in quite a lot of network activity. It can also put a
large strain on the master server, especially if is part of a large replication group or if there is
somehow a large difference between the master's database(s) and the contents of its replicas.

It is therefore possible to delay synchronization for any replica that discovers it has a new
master. You would do this so as to give the master time to synchronize other replicas before
proceeding with the delayed replicas.

To delay synchronization of a replica environment, you specify DB_REP_CONF_DELAYCLIENT to
DbEnv::rep_set_config() and then specify 1 to the onoff parameter. (Specify 0 to turn the
feature off.)

If you use delayed synchronization, then you must manually synchronize the replica at some
future time. Until you do this, the replica is out of sync with the master, and it will ignore all
database changes forwarded to it from the master.

You synchronize a delayed replica by calling DbEnv::rep_sync() on the replica that has been
delayed.

Managing Blocking Operations

When a replica is in the process of synchronizing with its master, DB operations are blocked
at some points during this process until the synchronization is completed. For replicas with a
heavy read load, these blocked operations may represent an unacceptable loss in throughput.

You can configure DB so that it will not block when synchronization is in process. Instead, the
DB operation will fail, immediately returning a DB_REP_LOCKOUT error. When this happens, it

Library Version 12.1.6.2 Additional Features

3/28/2016 Using Replication with DB Page 66

is up to your application to determine what action to take (that is, logging the event, making
an appropriate user response, retrying the operation, and so forth).

To turn off blocking on synchronization, specify DB_REP_CONF_NOWAIT to
DbEnv::rep_set_config() and then specify 1 to the onoff parameter. (Specify 0 to turn the
feature off.)

Stop Auto-Initialization

As stated in the previous section, when a replication replica is synchronizing with its master,
it will block DB operations at some points during this process until the synchronization is
completed. You can turn off this behavior (see Managing Blocking Operations (page 65)), but
for replicas that have been out of touch from their master for a very long time, this may not
be enough.

If a replica has been out of touch from its master long enough, it may find that it is not
possible to perform synchronization. When this happens, by default the master and replica
internally decide to completely re-initialize the replica. This re-initialization involves
discarding the replica's current database(s) and transferring new ones to it from the master.
Depending on the size of the master's databases, this can take a long time, during which
time the replica will be completely non-responsive when it comes to performing database
operations.

It is possible that there is a time of the day when it is better to perform a replica re-
initialization. Or, you simply might want to decide to bring the replica up to speed by
restoring its databases using a hot-backup taken from the master. Either way, you can decide
to prevent automatic-initialization of your replica. To do this specify DB_REP_CONF_AUTOINIT
to DbEnv::rep_set_config() and then specify 0 to the onoff parameter.

Read-Your-Writes Consistency

In a distributed system, the changes made at the master are not always instantaneously
available at every replica, although they eventually will be. In general, replicas not directly
involved in contributing to the acknowledgement of a transaction commit will lag behind other
replicas because they do not synchronize their commits with the master.

For this reason, you might want to make use of the read-your-writes consistency feature. This
feature allows you to ensure that a replica is at least current enough to have the changes
made by a specific transaction. Because transactions are applied serially, by ensuring a replica
has a specific commit applied to it, you know that all transaction commits occurring prior to
the specified transaction have also been applied to the replica.

You determine whether a transaction has been applied to a replica by generating a commit
token at the master. You then transfer this commit token to the replica, where it is used to
determine whether the replica is consistent enough relative to the master.

For example, suppose the you have a web application where a replication group is
implemented within a load balanced web server group. Each request to the web server
consists of an update operation followed by read operations (say, from the same client), The
read operations naturally expect to see the data from the updates executed by the same

Library Version 12.1.6.2 Additional Features

3/28/2016 Using Replication with DB Page 67

request. However, the read operations might have been routed to a replica that did not
execute the update.

In such a case, the update request would generate a commit token, which would be
resubmitted by the browser, along with subsequent read requests. The read request could be
directed at any one of the available web servers by a load balancer. The replica which services
the read request would use that commit token to determine whether it can service the read
operation. If the replica is current enough, it can immediately execute the transaction and
satisfy the request.

What action the replica takes if it is not consistent enough to service the read request is up
to you as the application developer. You can do anything from blocking while you wait for the
transaction to be applied locally, to rejecting the read request outright.

For more information, see the Read your writes consistency section in the Berkeley DB
Replication chapter of the Berkeley DB Programmer's Reference Guide.

Client to Client Transfer

It is possible to use a replica instead of a master to synchronize another replica. This serves to
take the request load off a master that might otherwise occur if multiple replicas attempted
to synchronize with the master at the same time.

For best results, use this feature combined with the delayed synchronization feature (see
Delayed Synchronization (page 65)).

For example, suppose your replication group consists of four environments. Upon application
startup, all three replicas will immediately attempt to synchronize with the master. But at the
same time, the master itself might be busy with a heavy database write load.

To solve this problem, delay synchronization for two of the three replicas. Allow the third
replica to synchronize as normal with the master. Then, start synchronization for each of
the delayed replicas (since this is a manual process, you can do them one at a time if that
best suits your application). Assuming you have configured replica to replica synchronization
correctly, the delayed replicas will synchronize using the up-to-date replica, rather than using
the master.

When you are using the Replication Manager, you configure replica to replica synchronization
by declaring an environment to be a peer of another environment. If an environment is a peer,
then it can be used for synchronization purposes.

Identifying Peers

You can designate one replica to be a peer of another for replica to replica synchronization.
You might want to do this if you have machines that you know are on fast, reliable network
connections and so you are willing to accept the overhead of waiting for acknowledgments
from those specific machines.

Note that peers are not required to be a bi-directional. That is, just because machine A
declares machine B to be a peer, that does not mean machine B must also declare machine A
to be a peer.

Library Version 12.1.6.2 Additional Features

3/28/2016 Using Replication with DB Page 68

You declare a peer for the current environment when you add that environment
to the list of known sites. You do this by specifying the DB_REPMGR_PEER flag to
DbEnv::repmgr_add_remote_site().

Bulk Transfers

By default, messages are sent from the master to replicas as they are generated. This can
degrade replication performance because the various participating environments must handle
a fair amount of network I/O activity.

You can alleviate this problem by configuring your master environment for bulk transfers.
Bulk transfers simply cause replication messages to accumulate in a buffer until a triggering
event occurs. When this event occurs, the entire contents of the buffer is sent to the replica,
thereby eliminating excessive network I/O.

Note that if you are using replica to replica transfers, then you might want any replica that
can service replication requests to also be configured for bulk transfers.

The events that result in a bulk transfer of replication messages to a replica will differ
depending on if the transmitting environment is a master or a replica.

If the servicing environment is a master environment, then bulk transfer occurs when:

1. Bulk transfers are configured for the master environment, and

2. the message buffer is full or

3. a permanent record (for example, a transaction commit or a checkpoint record) is placed
in the buffer for the replica.

If the servicing environment is a replica environment (that is, replica to replica transfers are
in use), then a bulk transfer occurs when:

1. Bulk transfers are configured for the transmitting replica, and

2. the message buffer is full or

3. the replica servicing the request is able to completely satisfy the request with the
contents of the message buffer.

To configure bulk transfers, specify DB_REP_CONF_BULK to DbEnv::rep_set_config() and
then specify 1 to the onoff parameter. (Specify 0 to turn the feature off.)

	Getting Started with Replicated Berkeley DB Applications
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction
	Overview
	Replication Environments
	Replication Databases
	Communications Layer
	Selecting a Master

	Replication Benefits
	Replication Mechanisms
	Replication Manager Overview
	Write Forwarding Overview
	Replication Base API Overview

	Holding Elections
	Influencing Elections
	Winning Elections
	Switching Masters

	Permanent Message Handling
	When Not to Manage Permanent Messages
	Managing Permanent Messages
	Implementing Permanent Message Handling

	Event Handling

	Chapter 2. Transactional Application
	Application Overview
	Program Listing
	Class: RepConfigInfo
	Class: excxx_repquote_gsg_simple
	Function: usage()
	Function: main()
	Method: SimpleTxn::init()
	Method: SimpleTxn::doloop()
	Method: SimpleTxn::print_stocks()

	Chapter 3. The DB Replication Manager
	The DbSite Handle
	Starting and Stopping Replication
	Managing Election Policies
	Selecting the Number of Threads

	Adding the Replication Manager to RepMgr
	Replication Manager Permanent Message Handling
	Identifying Permanent Message Policies
	Setting the Permanent Message Timeout
	Adding a Permanent Message Policy to RepMgrGSG

	Managing Election Times
	Managing Election Timeouts
	Managing Election Retry Times

	Managing Connection Retries
	Managing Heartbeats

	Chapter 4. Replica versus Master Processes
	Determining State
	Processing Loop
	Example Processing Loop
	Running It

	Chapter 5. Configuring for Write Forwarding
	Application with Write Forwarding Overview
	Program Listing
	Class: RepConfigInfo
	Class: excxx_repquote_gsg_RepMgrWrforGSG
	Function: usage()
	Function: main()
	Method: RepMgrWrforGSG::init()
	Method: RepMgrWrforGSG::doloop()
	Method: RepMgrWrforGSG::print_stocks()

	Chapter 6. Additional Features
	Delayed Synchronization
	Managing Blocking Operations
	Stop Auto-Initialization
	Read-Your-Writes Consistency
	Client to Client Transfer
	Identifying Peers

	Bulk Transfers

